ORIGINAL ARTICLES

Identification of Human Erythrocyte Cytosolic Proteins Associated with Plasma Membrane During Thermal Stress

Savita Sharma · Surekha M. Zingde · Sadashiv M. Gokhale

Received: 28 January 2013/Accepted: 31 May 2013/Published online: 18 June 2013 © Springer Science+Business Media New York 2013

Abstract The influence of thermal stress on the association between human erythrocyte membranes and cytosolic proteins was studied by exposing erythrocyte suspensions and whole blood to different elevated temperatures. Membranes and cytosolic proteins from unheated and heatstressed erythrocytes were analyzed by electrophoresis, followed by mass spectrometric identification. Four major (carbonic anhydrase I, carbonic anhydrase II, peroxiredoxin VI, flavin reductase) and some minor (heat shock protein 90 α , heat shock protein 70, α -enolase, peptidylprolyl cis-trans isomerase A) cytosolic proteins were found to be associated with the erythrocyte membrane in response to in vitro thermal stress. Unlike the above proteins, catalase and peroxiredoxin II were associated with membranes from unheated erythrocytes, and their content increased in the membrane following heat stress. The heat-induced association of cytosolic proteins was restricted to the Triton shells (membrane skeleton/cytoskeleton). Similar results were observed when Triton shells derived from unheated erythrocyte membranes were incubated with an unheated erythrocyte cytosolic fraction at elevated temperatures.

S. Sharma · S. M. Gokhale (⊠) School of Biochemistry, Devi Ahilya University, Khandwa Road, Indore 452017, India e-mail: gokhale.drsm@gmail.com

S. M. Zingde

This is a first report on the association of cytosolic catalase, α -enolase, peroxiredoxin VI, peroxiredoxin II and peptidylprolyl *cis–trans* isomerase A to the membrane or membrane skeleton of erythrocytes under heat stress. From these results, it is concluded that specific cytosolic proteins are translocated to the membrane in human erythrocytes exposed to heat stress and they may play a novel role as erythrocyte membrane protectors under stress by stabilizing the membrane skeleton through their interactions with skeletal proteins.

Keywords Erythrocyte · Membrane skeleton · Heat stress · Electrophoresis · Mass spectrometry

Introduction

A great deal of information is available about the cellular and molecular responses of nucleated cells to hyperthermia, but there are very few reports concerning the effects of heat stress on mammalian erythrocytes, which lack a nucleus and do not synthesize new proteins. Their intracellular environment consists of hundreds of cytosolic proteins including hemoglobin (Hb) and several enzymes. The erythrocyte membrane is made up of a lipid bilayer and a membrane skeleton. The membrane skeleton is composed of spectrin, band 4.1, actin and several minor proteins (Bennett 1990). When erythrocyte membranes are extracted with Triton X-100, the lipids and other proteins like band 3, band 4.5 and band 6 are extracted, leaving behind the "membrane skeleton." The major function of erythrocytes is oxygen transportation, and as a consequence, reactive oxygen species are formed, which could lead to compromised integrity of membranes, cellular lysis, protein modification, lipid peroxidation and Hb denaturation (Halliwell and

Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India

Gutteridge 1986; Lii and Hung 1997; Amer et al. 2008; Devasena et al. 2001).

The effects of heat stress on human erythrocyte morphology are well studied, including changes such as budding, fragmentation and transformation to a spheroechinocytic shape (Utoh et al. 1992). One of the methods of investigating damage to the erythrocyte membrane is osmotic fragility. Increased osmotic fragility and hemolysis have been attributed to membrane proteins (Ho and Lin 1991; Jozwiak et al. 1991). A direct correlation between hemolysis and membrane protein denaturation has been reported (Lepock et al. 1989). Heat-induced denaturation of spectrin showed modification in membrane physiochemical properties (Minetti et al. 1986). The spectrin dimer ($\alpha\beta$) undergoes dissociation to form monomers at temperatures of 49–50 °C, followed by aggregation of denatured β-subunits (Yoshino and Minari 1987). The changes in erythrocyte spectrin (dimer to tetramer ratio and extractability) due to heat stress (Yoshino and Minari 1987; Kumar et al. 1990; Gudi et al. 1990) and the role of spectrin thiols in maintaining erythrocyte membrane thermal stability have been reported (Streichman et al. 1988). Ozturk and Gumuslu (2004) studied the age-related changes in antioxidant enzymes and lipid peroxidation in rat erythrocytes after heat stress. Houston and Mearow (1979) reported an increase in erythrocyte carbonic anhydrase (CA) activity of fishes in response to changes in temperature. Alterations in membrane proteins are also reported during oxidative stress, hypoxia and long-term storage of blood (D'Amici et al. 2007; Kriebardis et al. 2007; Rocha et al. 2009). Heat shock proteins (HSP27 and HSP70) and peroxiredoxin II (Prdx II) perform the function of molecular chaperones in mouse erythrocytes during disease conditions (Biondani et al. 2008). HSP70-like protein in rhesus erythrocytes is reported to translocate to the membrane from the cytosol under heat stress, and the same protein in lesser amount is also found in human erythrocytes (Gudi and Gupta 1993). Wagner et al. (2004) have shown T-complex polypeptide 1 (TCP 1) interaction with the membrane when human erythrocyte suspension is exposed to heat at 48 °C. They have also reported the translocation of CA and flavin reductase (FR) from the cytosol to the membrane. There are no reports so far on the effect of heat stress on the association of other erythrocyte cytosolic proteins to the membrane.

This study examined the effect of heat denaturation of a major membrane skeletal protein, spectrin (at 50 °C), on intact erythrocytes. On the basis of the results, we report that exposure of erythrocytes to high temperatures leads to the association of several cytosolic proteins—HSP90 α , HSP70, catalase, α -enolase, CA (isoforms I and II), Prdx VI, FR, Prdx II and peptidylprolyl *cis–trans* isomerase A (PPIA)—with the membrane. In addition, this study shows the specific association of these cytosolic proteins to the Triton-generated membrane skeleton.

Materials and Methods

Chemicals

Trifluoroacetic acid, α -cyano-4-hydroxycinnamic acid (CHCA) matrix and calibration standards were obtained from Applied Biosystems (Foster City, CA). All other biochemicals used were of the grade suitable for gel electrophoresis and mass spectrometric analysis.

Preparation of Erythrocytes

Human blood, obtained from healthy volunteers, was collected in anticoagulant tubes containing acid citrate dextrose. Informed written consent was obtained from the voluntary donors. Erythrocytes were obtained by removing plasma and the buffy coat from blood by centrifugation at $1,000 \times g$ for 5 min at room temperature (RT) and washing four times with 10 volumes of Tris-buffered saline (TBS; 10 mM Tris–HCl [pH 7.4] with 150 mM NaCl) at the same g value.

Heat Treatment and Measurement of Osmotic Fragility

Aliquots of whole blood and erythrocyte suspensions (ES; 45 % hematocrit, n = 4) were heated for exactly 15 min at different elevated temperatures—44, 46, 48 and 50 °C—in a serological water bath. The tubes were cooled to room temperature. Whole blood was centrifuged at 1,000 x g for 10 min to pellet the erythrocytes, which were then washed with TBS. The osmotic fragility of the unheated and heated erythrocyte suspensions (UnHEs and HEs) was measured essentially according to Jaja et al. (2002).

Lysate and Membrane Preparations

Membranes were prepared from UnHEs and HEs (n = 10) according to Hanahan and Ekholm (1974) with the addition of 1 mM phenylmethylsulfonyl fluoride (PMSF). In the last washing, 0.05 % NaN₃ was added to the lysis buffer (10 mM Tris–HCl, pH 7.4) to prevent microbial growth. The membrane preparations so obtained are labeled Un-HEMs or HEMs. UnHEs and HEs were lysed by mixing 10 volumes of lysis buffer and centrifuging at 22,000×g for 15 min at 4 °C to obtain membranes and 10 % lysate (cytosol) fraction. UnHEs were also lysed with a 1:2 ratio of lysis buffer and centrifuged at 35,000×g for 30 min to obtain a concentrated lysate (Fig. 1).

Preparation of Triton Shells from Erythrocyte Membranes and Their Treatment with Cytosol

UnHEMs or HEMs (n = 4) were mixed with an equal volume of Triton X-100 solution (4 % v/v Triton X-100, 10 mM

Fig. 1 Flowchart for sample preparation

Tris-HCl [pH 7.4], 150 mM NaCl, 1 mM PMSF, 1 mM EDTA and 0.5 mM 2-mercaptoethanol) essentially as described by Gudi and Gupta (1993) with some modifications. After incubation for 20 min on ice, the extract was centrifuged at $10,000 \times g$ for 10 min in a refrigerated centrifuge. The pellet containing the Triton shells (TS) was separated and used for further studies. The Triton shells from unheated erythrocytes (UnHEsTS) were used to study the interactions between the membrane skeletal proteins in the Triton shells and the cytosolic proteins obtained from unheated erythrocytes (UnH-EsCy). For this purpose, UnHEsTS were mixed with 2 ml of UnHEsCy and incubated at 44, 46, 48 and 50 °C in a water bath for 15 min. Suspensions of UnHEsTS and UnHEsCy were then cooled to RT and centrifuged at $22,000 \times g$ for 15 min at 4 °C. Pellets were washed twice with lysis buffer to remove extra cytosolic proteins.

Analysis of the Protein Profile of Erythrocytes, Their Lysates, Membranes and the Triton Shells

Protein in the different erythrocyte preparations was estimated by the procedure of Lowry et al. (1951). The protein profiles of the different preparations were analyzed by onedimensional (1D) polyacrylamide gel electrophoresis (PAGE) in the presence of SDS essentially according to Laemmli (1970). Protein samples were solubilized in sample buffer containing 0.031 M Tris, 1 % SDS, 0.25 % β -mercaptoethanol and 5 % glycerol. After electrophoresis, the gels were fixed for 1 h in 40 % methanol–10 % acetic acid and then stained overnight in the same solution containing 0.1 % (w/v) Coomassie brilliant blue (CBB). Gels were destained in 40 % methanol–10 % acetic acid. The CBB-stained gel images were scanned using the Scanner HP scan jet 7400c (Hewlett Packard, Palo Alto, CA).

Gel Image Analysis

Densitometric analysis of CBB-stained bands on 1D gels was done using the UVP BioImaging Systems Lab-WorksTM Image Acquisition and Analysis software, version 4.0.0.8. The intensity of selected bands was measured and normalized by dividing with the total intensity of all the bands in the respective lanes.

Statistical Analysis

The relative intensity of each band from different samples was added and divided by the number of samples to obtain the relative mean intensity. The data from ten samples were then expressed as mean \pm standard error (SE). Difference in the intensity of the bands between unheated and heated erythrocyte samples was determined using GraphPad (San Diego, CA) PRISM 5, version 5.03, for an analysis of variance followed by the unpaired, two-tailed *t* test. The significance level was set at p < 0.05.

Identification of Proteins by Mass Spectrometry

Protein bands of interest were cut out from CBB-stained gels of two different samples and processed for identification by mass spectrometry (MS) [matrix-assisted laser desorption/ ionization-time of flight (MALDI-TOF-TOF)] according to Shevchenko et al. (1996). The protein digest was premixed with an equal volume of CHCA matrix and spotted on a MALDI plate (Bruker Daltonik, Bremen, Germany). Peptide mass fingerprint (PMF) data was acquired on MALDI-TOF (Ultraflex II, Brucker Daltonik) in the reflector mode. Mass calibration was carried out using a peptide mixture spanning mass range of 800–4,000 m/z and error was kept to less than 10 ppm. The resulting PMF data were processed and further analyzed using BioTools Version 3.0 (Brucker Daltonik) software. The data were searched against Swiss-Prot database with Homo sapiens species using the MASCOT search engine. Only those proteins identified by MASCOT search criteria with the top significant score were considered as acceptable for further validation. The proteins identified were examined for sequence coverage, number of peptides matched, agreement between theoretical and experimental gel molecular weight and matching of major peaks of PMF with the peptides identified in the protein. The identity of each protein was further confirmed by MS-MS experiments.

Results

Heat Stress and Osmotic Fragility

Erythrocytes subjected to heat stress show the effect of different temperatures on osmotic fragility (Fig. 2). The osmotic fragility curves of HEs shifted to the right of the curve for UnHEs with a rise in temperature from 44 °C to 50 °C. This indicates cell instability with a rise in temperature. It has been reported earlier that denaturation of spectrin occurs at 49–50 °C (Yoshino and Minari 1987). To determine if the osmotic fragility is only due to this protein or whether other membranes/cytosolic proteins are involved, the cytosol and membranes from UnHEs and

Fig. 2 Osmotic fragility curve obtained from unheated erythrocytes (*UnHEs*) and heated erythrocytes at various temperatures for 15 min. The data are mean \pm SE of independent experiments (n = 4)

HEs were analyzed by SDS-PAGE, followed by identification of the proteins by MS.

Analysis of the Protein Profile of Heat-Stressed Erythrocyte Membranes

A significant osmotic fragility (8.1 %, p < 0.001) at isotonic concentration (0.9 % NaCl) was observed only in erythrocytes heated at 50 °C for 15 min; thus, protein profiling of the erythrocyte membranes so treated was performed, and the bands obtained were subjected to densitometric analysis. Figure 3a shows the representative 1D protein profile, and Fig. 3b, c shows the densitometric analysis of the proteins from UnHEMs and HEMs obtained from erythrocytes of healthy individuals. The protein peak number in the densitogram corresponds to the band number shown in the 1D picture. The peak intensities of proteins band numbers 8, 9, 12 and 15-20 showed increased intensity after treatment. The major intensity changes were clearly observed with band numbers 15-18 (p < 0.001). All other proteins (band numbers 2-7, 11 and 13 with p < 0.001; 1 and 14 with p < 0.01; and 10 with p nonsignificant) showed a decrease in their intensities in HEMs.

Mass Spectrometry

The identity of the membrane proteins from UnHEs and HEs (50 °C for 15 min) was obtained by MS. The bands were cut from the 1D gel, and after tryptic digestion, the peptides were subjected to MALDI-TOF MS analysis. Proteins identified from UnHEMs and HEMs are given in Fig. 3a and Table 1. The major (bands 15–18) and some protein bands with minor changes in intensity (bands 8, 9, 19 and 20) were seen in HEMs (lane 2). These major and

Fig. 3 Analysis of membrane proteins obtained from unheated (*UnHEMs*) and heat-stressed (*HEMs*) erythrocyte membranes. **a** Separation of membrane proteins obtained from UnHEMs and HEMs by SDS-PAGE (12 % gel) and stained with CBB followed by mass spectrometric identification (Table 1). *Lane 1* UnHEMs (60 μ g); *lane 2* HEMs at 50 °C for 15 min (60 μ g). **b** Densitometric spectra of

UnHEMs (*red peaks*) and HEMs (*green peaks*) (n = 1). **c** Bar diagram showing changes in the intensity of the proteins (n = 10). The data are mean \pm SE (n = 10). Upper symbol indicates the differences versus control (UnHEMs). *p < 0.05, **p < 0.01, ***p < 0.001; *ns* nonsignificant

minor altered/additional proteins were identified as erythrocyte cytosolic proteins: CA I, CA II, Prdx VI, FR, catalase, α -enolase, Prdx II and PPIA, respectively (Fig. 3a, lane 2, and Table 1). Band 12 which showed a slight increase in intensity was not identified by MS (Fig. 3a, lane 2). The two proteins catalase and Prdx II, which were present in HEMs, were also present in detectable amounts in the membranes obtained from UnHEs. Bands 5 and 7 showed less intensity (p < 0.001) in HEMs than UnHEMs (Fig. 3a), and these were identified as HSP90 α and HSP70, respectively. Band 7 was identified adjacent to band 4.2 in HEMs, which was identified as protein band 4.2 in UnHEMs. Exposure of Erythrocyte Suspension to Thermal Stress

The rapid increase in osmotic fragility of erythrocytes was observed with 0.5 % NaCl concentration at different elevated temperatures: 44, 46, 48 and 50 °C for 15 min (Fig. 2). Therefore, protein profiling of isolated and washed erythrocytes suspended in isotonic buffer (45 % cell suspension) was done after exposure to those elevated temperatures. Figure 4 shows the pattern of the whole erythrocyte (lane 1), lysate (cytosol, lanes 2–6) and membrane (lanes 7–11) proteins obtained from erythrocyte suspensions following heat stress at different elevated temperatures. The results were reproduced with blood

1 anic	I Details of the mass speed of the mass	ול זחז כוכלוש		11 11g. za					
Band	Protein ID	Acc.	Theoretical $M_{\rm r}$	Observed M_r	MS ana	lysis		MS–MS analysis	
no.		no.	(kDa)/pI	(kUa)/pI	Score ¹	Sequence coverage (%)	Peptides matched	Peptides	Score ¹
UnHE	M								
1	Spectrin a	P02549	279.99/4.95	281/4.95	162	19	29/53	R.QYEQCLDFHLFYR.D	250
								K.VADDLLFEGLLTPEGAQIR.Q	
								K.ALGVPSSPYTWLTVEVLER.T	
								K. YSTIGLAQQWDQLYQLGLR.M	
7	Spectrin β	P11277	246.46/5.15	247/5.15	81	7	10/25	K.GNLEVLLFTIQSR.M	38
								K.FANSLTGVQQQLQAFSTYR.T	
б	Ankyrin	P16157	206.26/5.65	207/5.65	82	8	11/32	R.FWLSDCPR.T	286
								R.IITTDFPLYFVIMSR.L	
								K.TGFTPLHIAAHYENLNVAQLLLNR.G	
								R.IIALGPTGAQFLSPVIVEIPHFASHGR.G	
4	Band3	P02730	101.79/5.08	102/5.08	108	22	13/42	R.VLLPLIFR.N	318
								R.GWVIHPLGLR.S	
								R.ADFLEQPVLGFVR.L	
								R.LQEAAELEAVELPVPIR.F	
								R.FLFVLLGPEAPHIDYTQLGR.A	
9	Band 4.1	P11171	97.01/5.42	97.5/5.42	59	19	14/62	R.INRFPWPK.V	168
								K.IRPGEQEQYESTIGFK.L	
								K.NFMESVPEPRPSEWDKR.L	
								K.IRPGEQEQYESTIGFKLPSYR.A	
٢	Band 4.2	P16452	77/8.39	77.8/8.39	102	26	14/47	K.WWSAVVEER.D	244
								R.GQPFTIIL YFR.A	
								K.FQFTPTHVGLQR.L	
								K.IITIGLFFSNFER.N	
×	Catalase	P04040	59.75/6.9	59.9/6.9	68	30	11/67	R.AFYVNVLNEEQR.K	127
								R.LGPNYLHIPVNCPYR.A	
								R.GPLLVQDVVFTDEMAHFDRER.I	
10	Band 4.9 (dematin)	Q08495	45.51/8.94	45.6/8.94	74	24	8/27	R.SPGIISQASAPR.T	124
								K.STSPPPSPEVWADSR.S	
								R.TSLPHFHHPETSRPDSNIYK.K	
								K.IETDYWPCPPSLAVVETEWR.K	
								K.AILDIERPDLMIYEPHFTYSLLEHVELPR.S	

Table 1 Details of the mass spectrometric analysis for proteins mentioned in Fig. 2a

Table 1	1 continued								
Band	Protein ID	Acc.	Theoretical $M_{\rm r}$	Observed Mr	MS ana	lysis		MS-MS analysis	
no.		no.	(kDa)/pI	(kDa)/pI	Score ¹	Sequence coverage (%)	Peptides matched	Peptides	Score ¹
11	Actin	P60709	41.73/5.29	42/5.29	108	28	6/44	R.AVFPSIVGRPR.H	410
								K.IWHHTFYNELR.V K.SYELPDGQVITIGNER.F	
								K.DLYANTVLSGGTTMYPGIADR.M	
								R.TTGIVMDSGDGVTHTVPIYEGYALPHAILR.L	
13	Glyceraldehyde-3-phosphate	P04406	36.05/8.57	36.2/8.57	88	38	11/44	K.LVINGNPITIFQER.D	407
	denydrogenase (U3PD)							K.LISWYDNEFGYSNR.V	
								K. VIHDNFGIVEGLMTTVHAITATQK.T R VIISAPSA DADMFVMGVNHFKYDNSI K I	
14	Band 7 (stomatin)	P27105	31.73/7.71	31.8/7.71	64	30	8/44	K.GPGLFFILPCTDSFIK.V	81
	× •							R.ALKEASMVITESPAALQLR.Y	
								R.ALKEASMVITESPAALQLR.Y	
								K.GPGLFFILPCTDSFIKVDMR.T	
								K.GPGLFFILPCTDSFIKVDMR.T	
19	Peroxiredoxin II (Prdx II)	P32119	21.89/5.66	22/5.66	115	41	8/51	R.GLFIIDGKGVLR.Q	491
								K.EGGLGPLNIPLLADVTR.R	
								R.KEGGLGPLNIPLLADVTR.R	
								K.EGGLGPLNIPLLADVTRR.L	
пем								K.LGCEVLGVSVDSQFTHLAWINTPR.K	
1	Spectrin α	P02549	279.99/4.95	281/4.95	59	6	12/26	R.QYEQCLDFHLFYR.D	217
								K.VADDLLFEGLLTPEGAQIR.Q	
								V. VETICI ADOUDDOL VOL CH D M	
d	c					9			007
7	Spectrin β	P112114	c1.c/0 5 .c1	c1.c//.42	c£1	19	70/07	K.DLLSWMESIIK.Q K.GNLEVLLFTIOSR.M	103
								R.LWSYLQELLQSR.R	
								K.FANSLTGVQQQLQAFSTYR.T	
б	Ankyrin	P16157	206.26/5.65	207/5.65	66	6	11/18	R.IITTDFPLYFVIMSR.L	135
								K. TGFTPLHIAAHYENLNVAQLLLNR.G R. IIALGPTGAQFLSPVIVEIPHFASHGR.G	

🖄 Springer

Table	1 continued								
Band	Protein ID	Acc.	Theoretical $M_{\rm r}$	Observed Mr	MS ana	lysis		MS–MS analysis	
no.		no.	(kUa)/pI	(kUa)/pI	Score ¹	Sequence coverage (%)	Peptides matched	Peptides	Score ¹
4	Band 3	P02730	101.79/5.08	102/5.08	67	20	14/45	R.GWVIHPLGLR.S	333
								R.LQEAAELEAVELPVPIR.F	
								K.HSHAGELEALGGVKPAVLTR.S	
								R.FIFEDQIRPQDREELLR.A	
								R.FLFVLLGPEAPHIDYTQLGR.A	
5	Heat shock protein 90α (HSP90 α)	P07900	84.66/4.94	85/4.94	69	25	13/58	R.RAPFDLFENR.K	44
								K.HFSVEGQLEFR.A	
								K.LDSGKELHINLIPNK.Q	
9	Band 4.1	P11171	97.01/5.42	97.5/5.42	91	17	12/44	R.INRFPWPK.V	117
								R.QASALIDRPAPHFER.T	
								K.IRPGEQEQYESTIGFK.L	
								K.NFMESVPEPRPSEWDKR.L	
7	Heat shock protein 70 (HSP70)	P08107	70.05/5.48	77.8/8.39	56	23	9/31	K.QTQIFTTYSDNQPGVLIQVYEGER.A	23
8	Catalase	P04040	59.75/6.9	59.9/6.9	115	36	14/62	R.LFAYPDTHR.H	246
								R.AFYVNVLNEEQR.K	
								K.GAGAFGYFEVTHDITK.Y	
								R.LGPNYLHIPVNCPYR.A	
6	lpha-Enolase	P06733	47.16/7.01	47.5/7.0	57	23	8/31	K.LAMQEFMILPVGAANFR.E	118
								K.LAMQEFMILPVGAANFR.E	
								K.AGYTDKVVIGMDVAASEFFR.S	
10	Band 4.9 (dematin)	Q08495	45.51/8.94	45.6/8.94	62	19	5/21	K.STSPPPSPEVWADSR.S	80
								R.TSLPHFHHPETSRPDSNIYK.K	
								K.STSPPPSPEVWADSRSPGIISQASAPR.T	
								K.AILDIERPDLMIYEPHFTYSLLEHVELPR.S	
П	Actin	P60709	41.73/5.29	42/5.29	69	36	11/55	R.AVFPSIVGRPR.H	401
								K.IWHHTFYNELR.V	
								K.SYELPDGQVITIGNER.F	
								K.DLYANTVLSGGTTMYPGIADR.M	
								R.TTGIVMDSGDGVTHTVPIYEGYALPHAILR.L	
13	Glyceraldehyde-3-phosphate	P04406	36.05/8.57	36.2/8.57	68	25	6/20	K.LVINGNPITIFQER.D	175
	dehydrogenase(G3PD)							K.LISWYDNEFGYSNR.V	
								K.VIHDNFGIVEGLMTTVHAITATQK.T	
								R.VIISAPSADAPMFVMGVNHEKYDNSLK.I	

Table	1 continued								
Band	Protein ID	Acc.	Theoretical $M_{\rm r}$	Observed M _r	MS ana.	lysis		MS–MS analysis	
no.		no.	(kDa)/pI	(kDa)/pI	Score ¹	Sequence coverage (%)	Peptides matched	Peptides	Score ¹
15	Carbonic anhydrase I (CA I)	P00915	28.87/6.59	28.9/6.59	101	37	9/20	K.GGPFSDSYR.L	300
								K. EIINVGHSFH VNFEDNDNR. S	
								K.EIINVGHSFHVNFEDNDNRSVLK.G	
								R.SLLSNVEGDNAVPMQHNNRPTQPLK.G	
								R.SLLSNVEGDNAVPMQHNNRPTQPLKGR.T	
16	Carbonic anhydrase II (CA II)	P00918	29.24/6.87	29.2/6.87	150	09	15/50	K.SADFTNFDPR.G	198
								K. YAAELHL VHWNTK. Y	
								K.YDPSLKPLSVSYDQATSLR.I	
								R.KLNFNGEGEPEELMVDNWRPAQPLK.N	
17	Peroxiredoxin VI (Prdx VI)	P30041	25.03/6.0	25.1/6.0	58	34	5/23	R.FHDFLGDSWGILFSHPR.D M pggi 11 gdv apnef anttvgr 1	212
								R.IRFHDFLGDSWGILFSHPR.D	
18	Flavin reductase (FR)	P30043	22 11/7 13	13 717 13	231	86	19/38	K HDI GHEMI R C	248
						2		K.TVAGODAVIVLLGTR.N) -
								K. VVACTSAFLLWDPTKVPPR.L	
								R.LPSEGPRPAHVVVGDVLQAADVDK.T	
								K. YVAVMPPHIGDQPLTGAYTVTLDGR.G	
19	Peroxiredoxin II (Prdx II)	P32119	21.89/5.66	22/5.66	126	41	8/32	R.GLFIIDGKGVLR.Q	449
								K.EGGLGPLNIPLLADVTR.R	
								R.KEGGLGPLNIPLLADVTR.R	
								K.EGGLGPLNIPLLADVTRR.L	
								K.LGCEVLGVSVDSQFTHLAWINTPR.K	
20	Peptidyl-prolyl cis-trans isomerase A	P62937	18.01/7.68	18.2/7.68	57	42	6/29	R.IIPGFMCQGGDFTR.H	104
	(PPIA)							R.IIPGFMCQGGDFTR.H	
								K.SIYGEKFEDENFILK.H	
								M.VNPTVFFDIAVDGEPLGR.V	
Acc ne	accession number								

Acc. no. accession number ¹ MS and MS-MS scores are mentioned in rounded figures

в

Fig. 4 Analysis of erythrocyte lysate (cytosol) and membrane proteins obtained from erythrocyte cell suspension exposed to various temperatures by SDS-PAGE (12 % gel) and stained with CBB. *Lane 1* unheated erythrocytes (whole cells, *UnHEs*); *lane 2* unheated erythrocyte lysate (*UnHEsCy*); *lanes 3–6* lysates (*HEsCy*) obtained from heat-stressed erythrocytes exposed to 44, 46, 48 and 50 °C for

samples from four different donors. The appearance of altered/additional bands with increased intensities was associated with the membranes prepared from erythrocytes heated at 46-50 °C (lanes 9-11). These additional bands were identified as cytosolic proteins which become associated with membrane proteins at and above 46 °C, corresponding to the osmotic fragility curves of erythrocytes (Fig. 2). The translocation of CA I and II (bands 15 and 16) was also observed at a much lower amount at 44 °C, and the first clear intense appearance of CA I, CA II and FR (bands 15, 16 and 18) was observed at 46 °C (lane 9). The intensities of these bands increased with further rises in temperature to 48 and 50 °C (lanes 10 and 11). The presence of minor changes in intensity of other proteins-catalase, *a*-enolase, Prdx VI, Prdx II and PPIA-was also observed with a rise in temperature (lanes 10 and 11) in HEMs and was absent in UnHEMs (lane 7) at their corresponding positions except for catalase and Prdx II. All these identified proteins in HEMs had corresponding bands in the UnHEsCy (lane 2). The localization of cytosolic and membrane proteins in the erythrocyte correlated well with

15 min, respectively (60 μ l protein in each lane); *lane* 7 unheated erythrocyte membrane (*UnHEMs*); *lanes* 8–11 erythrocyte membranes (*HEMs*) obtained from heat-stressed erythrocytes exposed to 44, 46, 48 and 50 °C for 15 min, respectively (60 μ g protein in each *lane*). This is a representative pattern obtained for four different samples

the erythrocyte proteome analysis (Kakhniashvili et al. 2004; Pasini et al. 2006; Goodman et al. 2007), where cytosolic and membrane proteins are listed separately. A decrease in the intensity of proteins—spectrin α , spectrin β , ankyrin, band 3, HSP90 α , band 4.1, HSP70, dematin, actin, glyceraldehyde-3-phosphate dehydrogenase (G3PD) and stomatin (Fig. 4, lanes 9–11)—was also similar to that seen in HEMs (Fig. 3b, c). Also, Hb is associated with HEMs, and this association increases with a rise in temperature (Fig. 4, lanes 8–11).

Exposure of Whole Blood to Thermal Stress

As exposure of washed erythrocyte suspensions showed significant changes in the protein pattern of erythrocyte membranes, whole blood was also exposed to different elevated temperatures—44, 46, 48 and 50 °C—for 15 min to determine whether the same effect of temperature is seen with erythrocytes when they are present in whole blood. The protein profiling of the whole erythrocytes (unheated), lysate (cytosol) and membrane proteins following heat

Fig. 5 Analysis of Triton shells obtained from erythrocyte membranes exposed to various temperatures. **a** Separation of proteins of Triton shells obtained from unheated (*UnHEMs*) and heat-stressed (*HEMs*) erythrocyte membranes by SDS-PAGE (12 % gel) and stained with CBB followed by mass spectrometric identification (Table 2). *Lane 1* unheated erythrocytes (whole cells, *UnHEs*, 60 µl); *lane 2* unheated erythrocyte lysate (*UnHEsCy*, 60 µl); *lane 3* unheated erythrocyte membrane (*UnHEMs*, 60 µg); *lanes 4–8* Triton shells obtained from unheated (*UnHEsTS*) and heat-stressed (*HEsTS*)

stressed erythrocytes exposed to 50 °C for 15 min (60 µg). **b** Densitometric spectra of UnHEsTS (*red peaks*) and HEsTS (*green peaks*). **c** *Bar* diagram shows changes in protein intensity (n = 4). The data are mean \pm SE (n = 4). *Upper symbol* indicates the differences versus control (UnHEsTS). *p < 0.05, **p < 0.01, ***p < 0.001; *ns* nonsignificant (Color figure online)

erythrocytes exposed to 44, 46, 48 and 50 °C for 15 min, respectively

(50 µg protein in each lane); lane 9 membranes (HEMs) from heat-

stress at different elevated temperatures was done (data not shown); and similar results to those given above (Fig. 4) were observed. The results were reproducible with blood samples from four different donors.

Analysis of the Protein Profile of Triton Shells

To identify the location of the translocated proteins in the membrane (i.e., peripheral or integral), UnHEMs and HEMs were extracted with 4 % Triton X-100. When erythrocyte membranes are extracted with Triton X-100, most of the lipids and other proteins such as band 3, band 4.5 and band 6 are extracted, leaving behind a structure known as the "cytoskeleton." Figure 5a shows the protein pattern of the whole erythrocytes (lane1), UnHEsCy (lysate/cytosol, lane 2), UnHEMs (lane 3), HEMs, 50 °C (lane 9) and UnHEsTS (lane 4) and those (HEsTS) exposed to heat stress at 44, 46, 48 and 50 °C for 15 min (lanes 5–8, respectively). The selected proteins identified from heated erythrocyte Triton shells (HEsTS) are given in Table 2.

The Triton shell consists of spectrin (α and β), ankyrin, 4.1, 4.2, dematin, actin and stomatin as well as 15-25 % of band 3 (band numbers 1, 2, 3, 6, 7, 10, 11, 14 and 4 respectively). Figure 5b and the bar diagram (Fig. 5c) show the densitometric comparison of UnHEsTS and HEsTS at 50 °C for 15 min. The bar diagram in Fig. 5c shows the relative mean intensity of proteins of UnHEsTS and HEsTS (n = 4). The intensity of protein bands 8, 9 and 15-20 in HEsTS was increased compared to HEMs (Fig. 4, lanes 9-11). The major changes in intensity were observed in lower-molecular weight membrane skeletal proteins, bands 15–18 (p < 0.001). Bands 8, 9, 19 and 20 were present in very low amounts in UnHEsTS compared to HEsTS (Fig. 5b, lanes 1 and 2, respectively). These protein bands were increased (insignificantly), and only band 20 showed a significant increase (p < 0.05) as seen in HEMs (Fig. 3a, lane 2). Bands 8 and 19 were present in UnHEMs (Fig. 4, lane 7) but were not observed in Triton shells extracted from UnHEMs (Fig. 5a, lane 4). At the same time, all other proteins (bands 4, 6 and 11 with p < 0.001;

Band Protein ID As: Machine ID	Build Protein ID Acc. Theoretical ML, (Dolpful Overrad ML, (Dolpful MS-MS analysis. MS-MS analysis. MS-MS analysis. HEAT (LOD)PU (LOD	Table	2 Details of the mass spectrometr	ric analysi	s for proteins shov	wn in Fig. 4b					
mon and the second of the second secon	model model model periadis per	Band	Protein ID	Acc.	Theoretical $M_{\rm r}$	Observed $M_{\rm r}$	MS ana	lysis		MS–MS analysis	
HERT5Heat shock protein "014"P0700 466449 85449 85449 85449 85449 85449 85449 85449 85449 85449 85449 85449 85496 $8707171750300767174503009671407456EA275666666666666666666666666666666666666$	HEATS HEAT Hold NOT Biology S1.664-39 S4.49 S1.464 RAVINDATE LEPTATING 0 17 7 Heat shock provint 7014 P1645 7.055-34 7.48 29 8.49 8.494 27 20 20 20 1.43 RAVINDATE LEPTATING 0 12 143 27 20 20 20 143 RAVINDATE LEPTATING 0 12 25 20	no.		no.	(kDa)/pl	(kDa)/pl	Score ¹	Sequence coverage (%)	Peptides matched	Peptides	Score ²
5 Hain shock protein 90x 70790 8.464 8.494 8.5 11,53 KGVUSEDLPLNKE 17 7 Hain shock protein 70(H270) P1645 7.88,39 70 20 826 KGVUSEDLPLNKE 23 8 Cachalae P1645 7.88,30 596,69 74 29 826 KGVUSTBIPANTPRKA 23 15 Cachalae P1040 9.756,3 596,69 74 29 826 KGPUNUNEDRKA 23 16 Cachalae P1041 P0041 23,657 23,966 74 29 826 KGPUNUNEDRKA 23 16 Cachalae P1040 9756,3 23,966 126 74 29 829 KGPUNUNEDRKA 21 16 Cachalae P1040 P0041 P0041 2946,87 126 74 20 829 820	5 Hain shock protein 90a 67090 6.66494 5.4344 8.0 2.1 11.33 RCVDSEDLPLNISR.E 17 7 Hain shock protein 701H270 P1452 20.654.9 7.3 2.9 9.9 7 2 RCVDSEDLPLNISR.E 17 8 Canalace P1443 59.756.9 7.3 7.8 2 0.055.4 7.3 2.0 7 2 2 RCPUDUTTTSNORPCULIVYEGERA 12 8 Canalace P1443 59.756.9 7.9 2 9.9 13.4 12 14 16 Canalace P1440 9.756.59 7.9 2.9 13.4 12 14 17 Canalace P140 P145 2.246.87 2.9 13.4 14 14 18 Canboic anhydraet I (CA I) P0901 2.946.87 2.906.87 10 14 14 14 14 14 14 14 14 14 14 14 14 14 14	HEsTS									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1HarshougR. YFMMYCELITYKIAG28Cadalaee90,55,457,58,3978,54RAPWYCERKA28Cadalaee90,90,559,96,97,4298,49RAPWYLIREQKK14213Cadalaee90,9128,76,5959,96,9778,20RAPWYLIREQKK14214Carbonic anhydrase I (CA I)P001328,76,59259,6,59126378,23K.EITWORFFIDMRR.KA21715Carbonic anhydrase I (CA I)P001329,36,69232678,23K.EITWORFFIDMSR.KA21716Carbonic anhydrase I (CA I)P001329,246,8710540973K.EITWORFFIDMSR.KA21717Carbonic anhydrase I (CA I)P001329,246,87292687K.EITWORFFIDMSR.KAG21717Perevinedoxin VI (Pdx VI)P001329,246,87292687K.EITWORFFIDMSR.KAG21717Perevinedoxin VI (Pdx VI)P001429,36025869787K.EARMORFFILMYNFFIDMSR.KAG21718Flavin reducting (FR)P301423,05025,1605631K.EARMORFFILMYNFFIDMSR.KAG21721719Perevinedoxin VI (Pdx VI)P301423,05025,1605631K.EARMORFFILMYNFFIDMSR.KAG21719Perevinedoxin VI (Pdx VI)P3013211/7.1322,27/131547171747410Perevinedoxin VI (Pdx VI)<	S	Heat shock protein 90x	P07900	84.66/4.94	85/4.94	80	23	11/33	R.GVVDSEDLPLNISR.E	17
7 Heat shock protein 70(15770) P1645 70.655.48 77.36.35 77.36.35 77.36.35 77.36.35 77.36.35 77.36.35 77.36.35 77.36.35 77.36.35 8.275.65 8.275.65 8.275.65 8.275.65 1.342 R.GPNYLHIPUSNETYRA 1.42 15 Carbonic anhydrase I (CA II) P00915 38.876.59 59.96.59 126 37 K.GPNYLHIPSIDAMHFDRE I 2.73 2.73 16 Carbonic anhydrase I (CA II) P00915 29.376.57 105 40 9.23 K.BINVCHISHMANFEDNKS 2.73 2.73 17 Carbonic anhydrase II (CA II) P00918 29.246.57 105 40 9.23 5.75 2.74	7 Heat shock protein 70(HSPT0) P1635 70055543 778.3.30 70 20 8256 K.OTOTTTTSDNOPOULOVYEGR.A 27 15 Catalase 1 1 R.GPLUVQDVYTDBAAHFDR.E 142 15 Catabase I (CA I) 1001 38576.39 5996.39 126 37 R.GPLUVQDVYTDBAAHFDR.E 142 16 Catbase I (CA I) 1001 28576.39 2896.39 126 37 R.GPLUVQDVYTDBAAHFDR.E 217 16 Catbasic anhydrase I (CA I) 1001 28576.39 2896.39 126 37 8.63 K.GPFSDSNL 217 16 Catbasic anhydrase II (CA II) 1001 28576.30 2936.60 126 37 K.GPFSDSNL 217 217 17 Catbasic anhydrase II (CA II) 1001 29246.87 105 40 923 K.ADFFNDFRG 313 18 Catbasic anhydrase II (CA II) 1001 29246.87 105 40 923 K.ADFFNDFRG 214 214 18 Catbasic anhydrase II (CA II) 1001 2536.60 254.66 214 214 <		$(HSP90\alpha)$							R.VFIMDNCEELIPEYLNFIR.G	
8 Caalase P04040 57569 59969 74 20 1342 RAPYUNUREQRK 12 1 Carbonic anhydrase I (CA I) P0015 387659 29 26 37 $K CRPLUSPWYFRAAMHDRER 217 16 Carbonic anhydrase I (CA I) P0015 387659 299659 106 37 K CRPENDYLIPPWFRAAMFDRER 217 16 Carbonic anhydrase I (CA II) P0015 387659 292687 105 400 923 K CRPENDYRIPMERNYLED 217 17 Carbonic anhydrase I (CA II) P0018 9224687 105 106 923 K CRPENDYRIPMERNYLED 117 18 Carbonic anhydrase I (CA II) P0018 9224687 105 106 922 K CRPENDARSALL 117 112 19 Carbonic anhydrase I (CA II) P0018 9224687 105 K CRAPELHUVHWTKY 114 10 Particle (FR) P0018 2924687 105 K CRAPELHUVHWTKY 124 $	8 Carlase 09040 575/6.0 59/6.0 74 29 1342 R.ACPWAITHEWKERA 14 15 Carbuoic anhydrase I (CA I) P00915 28.9/6.30 126 77 8.23 K.GPMLVDOWYFTDBAIHFDREI. 217 16 Carbuoic anhydrase I (CA I) P00915 28.9/6.30 126 77 8.23 K.GPMLVDOWYFTDBAIHFDREI. 217 16 Carbuoic anhydrase I (CA I) P00918 29.2/6.87 105 40 9/32 K.GDFNVFDEDNDRKS/LKG 313 17 Carbuoic anhydrase I (CA I) P00918 29.2/6.87 105 40 9/32 K.GDFNVFDEDNDRKS/LKG 313 17 Perviredoxin VI (Prix VI) P3094 25.1/6.0 56 34 9/32 K.NDFNGEDPELAVDDWRPAGA 313 18 Perviredoxin VI (Prix VI) P3094 25.1/6.0 56 34 5/25 K.NDFNGEDPELAVDWRPAGA 313 19 Perviredoxin VI (Prix VI) P3094 25.0/6.0 56 34 5/25 K.NDFNGEDPELAVDWRPAGA 313 <td>٢</td> <td>Heat shock protein 70(HSP70)</td> <td>P16452</td> <td>70.05/5.48</td> <td>77.8/8.39</td> <td>70</td> <td>20</td> <td>8/26</td> <td>K.QTQTFTTYSDNQPGVLIQVYEGER.A</td> <td>27</td>	٢	Heat shock protein 70(HSP70)	P16452	70.05/5.48	77.8/8.39	70	20	8/26	K.QTQTFTTYSDNQPGVLIQVYEGER.A	27
 Ia Carbonic anhydrase I (CA I) Pooli 2 887/6.59 Carbonic anhydrase I (CA I) Pooli 2 887/6.59 Carbonic anhydrase I (CA I) Pooli 2 924/6.87 Carbonic anhydrase I (CA I) Pooli 2 504/6.97 Carbonic anhydrase I (CA I) Pooli 2 504/6.97 Carbonic anhydrase I (CA I) Pooli 2 504/6.97 Carbonic And I (PA I) Pooli 2 211/1.13 C 227/13 C 1 C 227/13 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15 Carbonic anlydrae I (CA I) P0915 8.8.76.59 28.96.59 15 8.7 8.001 VODVYFDBAAHIDRRAL 21 16 Carbonic anlydrae I (CA I) P0915 28.576.59 29.96.59 15 8.7 8.001 VODVYFDBAAHIDRRAL 21 17 Carbonic anlydrae I (CA I) P0918 29.246.87 29.26.87 105 40 9.2 8.701 VIDPARIG 313 17 Carbonic anlydrae II (CA I) P0918 29.246.87 29.26.87 105 8.01 9.2 104 21 21 21 17 Earbonic anlydrae II (CA I) P0918 29.246.87 105 40 9.2 8.23 103 114 18 Peroviredoxin VI (Pdx V) P3041 2036.0 25 31 8.14 104 2.035.0 25.16.0 5 31 8.14 10	8	Catalase	P04040	59.75/6.9	59.9/6.9	74	29	13/42	R.AFYVNVLNEEQR.K	142
15 Carbonic anitydrase I (CA I) 90015 28,376,59 28,96,59 126 37 RGFLVQDVYTDEMAHDRE 16 Carbonic anitydrase I (CA I) P0015 28,376,59 28,96,59 126 37 RGFLVQDVYTDEMAHDREL 217 17 Carbonic anitydrase I (CA II) P0015 28,376,59 28,96,59 126 37 8,05 KGFPSDYRL 213 17 Carbonic anitydrase II (CA II) P0018 29,246,87 105 40 923 KGFBSDYRL 313 17 Peroviredoxin VI (PdX VI) P3004 29,246,87 105 40 923 KAABLHVHWYRY 114 18 Peroviredoxin VI (PdX VI) P3004 25,046 55 34 KAABLHVHWYRY 144 18 Paviredoxin VI (PdX VI) P3004 25,046 56 34 144 18 Paviredoxin VI (PdX VI) P3004 25,0713 154 71 154 19 Paviredoxin VI (PdX VI) P3004 25,046 52 34 144	15 Carbonic anhydrase I (CA I) P0015 3.8.7/6.59 2.8.9/6.59 1.6 37 R.GFLVODVYTDEMAHFDRE. 217 16 Carbonic anhydrase I (CA I) P0015 3.8.7/6.59 2.8.9/6.59 1.6 37 K.GFLVODVYTDEMAHFDRE.L 217 17 Carbonic anhydrase I (CA I) P0018 2.9.2/6.87 1.05 40 972 K.EINVGIBFHVYEDDNDNRS.KLGG 313 17 Perovinedorin VI (Prdx VI) P30041 2.030%0 2.5.1/6.0 56 34 K.YDELMPPRG.GEFFELMODWVEDDMNRS.KLGG 313 18 Perovinedorin VI (Prdx VI) P30041 2.5.1/6.0 56 34 K.YDELMPPRG.GEFFELMODWVEDGMILSHRN.MS 313 19 Perovinedorin VI (Prdx VI) P30041 2.5.1/6.0 56 34 K.YDELMPRG.GEFFELMODWVEDGMILSHR.MS 313 18 Paviredorin VI (Prdx VI) P30041 2.5.1/6.0 57 R.HIPFIDGSWCILSHR.MS 325 19 Perovinedorin VI (Prdx VI) P30041 2.5.1/7.13 134 K.YDEGMIRSHVEDNOWFEDMWERS/KGG 325 19 Perovinedorin VI (Prdx VI) P30041 2.5.1/7.13 12 K.YDEGMIRSHVEDMMARCKL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>R.LGPNYLHIPVNCPYR.A</td> <td></td>									R.LGPNYLHIPVNCPYR.A	
$ I \ \ \ \ \ \ \ \ \ \ \ \ \$	15Carbonic aritydrase I (CA)P0091 $2.87/6.39$ $2.8.9/6.39$ 126 7 8.23 $R.GPLVQDVFTDBM.HFDR.R.I$ 2.7 16Carbonic aritydrase I (CA)P0091 $2.8.7/6.39$ $2.8.9/6.37$ 126 $8.9/3$ $K.GPPSDYR.L.2.717Carbonic anitydrase I (CA)P00912.24/6.87105409.22K.GPPSDYR.L.2.117Peroviredoxin VI (Prdx VI)P00912.24/6.872.92/6.87105409.22K.CARELHVHWRRY2.118Peroviredoxin VI (Prdx VI)P300412.503/6.02.51/6.056347.2K.CARELHVHWRRY1.418Peroviredoxin VI (Prdx VI)P300412.503/6.02.51/6.0561.95.2K.CARELHVHWRRY2.218Peroviredoxin VI (Prdx VI)P300412.503/6.02.51/6.0561.95.2K.CARELHVHWRRY2.219Peroviredoxin VI (Prdx II)P300412.207/131.547.1K.CARELHVHWRRY2.219Peroviredoxin II (Prdx II)P30142.21/7.131.54K.VAREPIELGDSWCILFSHRD2.210Peroviredoxin II (Prdx II)P32112.237/131.54K.VAREPIELGDSWCILFSHRD2.210Peroviredoxin II (Prdx II)P32112.237/131.54K.VAREPIELGPSWCILFSHRD2.210Peroviredoxin II (Prdx II)P3211P32172.257611.82.257712.257$									R.GPLLVQDVVFTDEMAHFDR.E	
15 Carbonic anhydrase I (CA I) 90915 28.76.59 28.96.59 126 7 821N VGHSFHVYREDNDNRS 21 16 Carbonic anhydrase II (CA II) P00918 29.246.87 105 40 972 KEINVGHSFHVNFEDNDNRSVKG 313 17 Carbonic anhydrase II (CA II) P00918 29.246.87 29.26.87 105 40 972 KEINVGHSFHNDDNRSVKG 313 17 Peroviredoxin VI (Prdx VI) P30041 25.16.0 56 34 7 7 7 7 7 313 17 Peroviredoxin VI (Prdx VI) P30041 25.16.0 56 34 70 8 7 14 18 Flavin reductase (FK) P30041 25.16.0 56 34 70 8 14 19 Flavin reductase (FK) P30041 25.16.0 56 34 8 14 14 10 Pavin reductase (FK) P30041 25.16.0 56 34 8 14 14 11 <td>15 Carbonic anhydrase I (CA I) P00915 3.87/6.59 28.96.59 10 8.23 K.GRFSDSYRL 21 16 Carbonic anhydrase II (CA II) P00918 29.246.87 105 40 9.32 K.EINVCHSHYNFEDNDNRSVK.G 313 17 Earbonic anhydrase II (CA II) P00918 29.246.87 29.26.87 105 40 9.32 K.EINVCHSHYNFEDNDNRSVK.G 313 17 Pervinedoxin VI (Prdx VI) P3091 29.246.87 105 40 9.32 K.EINVCHSHYNFEDNDNRSVK.G 313 18 Pervinedoxin VI (Prdx VI) P3094 25.16.0 56 34 525 R.FHDFLGDSWCILESHPRD 144 18 Flavin reductase (FR) P30043 22.07.13 154 71 1343 K.TVAGOJAVIVILGTNAN 282 18 Flavin reductase (FR) P30043 22.07.13 154 71 8.1540000XIVILGTNAN 282 19 Pervinedoxin VI (Prdx II) P30143 22.117.13 22.27.13 154 8.154000XIVILGTNAN 282 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>R.GPLLVQDVVFTDEMAHFDRER.I</td><td></td></t<></td>	15 Carbonic anhydrase I (CA I) P00915 3.87/6.59 28.96.59 10 8.23 K.GRFSDSYRL 21 16 Carbonic anhydrase II (CA II) P00918 29.246.87 105 40 9.32 K.EINVCHSHYNFEDNDNRSVK.G 313 17 Earbonic anhydrase II (CA II) P00918 29.246.87 29.26.87 105 40 9.32 K.EINVCHSHYNFEDNDNRSVK.G 313 17 Pervinedoxin VI (Prdx VI) P3091 29.246.87 105 40 9.32 K.EINVCHSHYNFEDNDNRSVK.G 313 18 Pervinedoxin VI (Prdx VI) P3094 25.16.0 56 34 525 R.FHDFLGDSWCILESHPRD 144 18 Flavin reductase (FR) P30043 22.07.13 154 71 1343 K.TVAGOJAVIVILGTNAN 282 18 Flavin reductase (FR) P30043 22.07.13 154 71 8.1540000XIVILGTNAN 282 19 Pervinedoxin VI (Prdx II) P30143 22.117.13 22.27.13 154 8.154000XIVILGTNAN 282 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>R.GPLLVQDVVFTDEMAHFDRER.I</td><td></td></t<>									R.GPLLVQDVVFTDEMAHFDRER.I	
16 carbonic anhydrase II (CA II) P00918 29246.87 105 40 973 KEIINVGEISFHVNEEDNDNRSVLGG 313 17 Pervicedoxin VI (Prdx VI) P30041 25346.67 105 40 973 KADFTHYPDRG 313 18 Pervicedoxin VI (Prdx VI) P30041 25316.0 56 34 KLNFYGEGEPELMYDWRPAQPLKN 144 18 Pavin reductase (FR) P30043 2311/7.13 154 71 NFGGLIJCDYARPEGEPELMYDWRPAQPLKN 144 19 Pervicedoxin VI (Prdx VI) P30043 2311/7.13 154 71 NFGGLIJCDYARPEGEPELMYDWRPAQPLKN 244 10 Pervicedoxin VI (Prdx VI) P30043 2217/13 154 71 244 244 11 Pervicedoxin VI (Prdx VI) P30043 211/7.13 154 KLNFYGEGEPELMYDWRPAQPL 244 12 Pavin reductase (FR) P30043 211/7.13 154 KLNFYGEGEPELMYDWRPAQPL 244 13 Pavin reductase (FR) P30043 211/7.13 154 KLNFYGEGEPELMYDWRPAQPL 244 14 Pavin reductase (FR) P3043 212/7.13 <td>16 Carbonic anhydrase II (CA II) P00918 29.246.87 105 40 973 KEIINVGISFHVNFEDNDNRSVLKG 313 17 Peoxitedoxin VI (Pdrk VI) P30941 25.036.00 55 34 KLINFOGGEPEELMVDWNRPAQPLKJN 313 18 Flavin reductase (FR) P30941 25.036.00 25.16.00 55 34 KLINFOGGEPEELMVDWNRPAQPLKJN 144 18 Flavin reductase (FR) P30941 25.036.00 25.16.00 55 34 575 R.KLINFOGGEPEELMVDWNRPAQPLKJN 144 19 Peoxitedoxin VI (Pdrk VI) P30941 25.01/1.13 25.16.00 56 34 71 1343 KLINFOGGEPEELMVDWNRPAQPLKJN 144 10 Peoxitedoxin VI (Pdrk II) P30941 25.01/1.13 154 71 R.KLINFOGGEPEELMVDWNRPAQPLKJN 282 11 Peoxitedoxin II (Pdrk II) P30941 211/1.13 22.27/1.13 154 71 R.RFHDFLGDSWGILFSHPR.D 282 12 Peoxitedoxin II (Pdrk II) P3014 213/1.13 22.27/1.13 154 71 R.RFHDFLGDSWGILFSHPR.D 282 13 Peoxitedoxin II (Pdrk</td> <td>15</td> <td>Carbonic anhydrase I (CA I)</td> <td>P00915</td> <td>28.87/6.59</td> <td>28.9/6.59</td> <td>126</td> <td>37</td> <td>8/23</td> <td>K.GGPFSDSYR.L</td> <td>217</td>	16 Carbonic anhydrase II (CA II) P00918 29.246.87 105 40 973 KEIINVGISFHVNFEDNDNRSVLKG 313 17 Peoxitedoxin VI (Pdrk VI) P30941 25.036.00 55 34 KLINFOGGEPEELMVDWNRPAQPLKJN 313 18 Flavin reductase (FR) P30941 25.036.00 25.16.00 55 34 KLINFOGGEPEELMVDWNRPAQPLKJN 144 18 Flavin reductase (FR) P30941 25.036.00 25.16.00 55 34 575 R.KLINFOGGEPEELMVDWNRPAQPLKJN 144 19 Peoxitedoxin VI (Pdrk VI) P30941 25.01/1.13 25.16.00 56 34 71 1343 KLINFOGGEPEELMVDWNRPAQPLKJN 144 10 Peoxitedoxin VI (Pdrk II) P30941 25.01/1.13 154 71 R.KLINFOGGEPEELMVDWNRPAQPLKJN 282 11 Peoxitedoxin II (Pdrk II) P30941 211/1.13 22.27/1.13 154 71 R.RFHDFLGDSWGILFSHPR.D 282 12 Peoxitedoxin II (Pdrk II) P3014 213/1.13 22.27/1.13 154 71 R.RFHDFLGDSWGILFSHPR.D 282 13 Peoxitedoxin II (Pdrk	15	Carbonic anhydrase I (CA I)	P00915	28.87/6.59	28.9/6.59	126	37	8/23	K.GGPFSDSYR.L	217
16 Carbonic anhydrase II (CA II) 90018 29.24.6.57 105 40 9732 K.EIINVGHSFHVRFEDNDNRSVLK.G 313 17 Peroxitedoxin VI (Prdx VI) P30041 2.9.26.87 105 40 9732 K.ADETNFDPR.G 313 18 Peroxitedoxin VI (Prdx VI) P30041 25.04.67 29.16.0 56 34 575 K.INPNGEGEPEELMVDNWRPAQPLK.N 18 Flavin reductase (FR) P30041 25.04.61 56 34 71 K.INPNGEGEPEELMVDNWRPAQPLK.N 144 18 Flavin reductase (FR) P30043 22.11/1.13 22.27/1.15 75 R.KLNFNGEGEPEELMVDNWRPAQPLK.N 282 19 Peroxitedoxin VI (Prdx VI) P30043 22.11/1.13 154 71 R.VAGDILGDNARPTEDDNWRPAQPLK.N 282 10 Perovitedoxin VI (Prdx VI) P30043 22.11/1.13 22.27/1.13 22.27/1.14 74 74 74 74 10 Peroxitedoxin VI (Prdx VI) Peroxitedoxin VI (Prdx VI) 16 22.27/1.14 74 74 74 74	16Carbonic anhydras II (CA II)P0018 $29.246.87$ $29.26.87$ 105 40 9.32 K.EIINVGERHYNFEDNDRSYLKG 313 17Peroxinedoxin VI (Prdx VI)P30041 $2.036.00$ $25.16.00$ 56 34 8.525 K.LNPNGEGEPEELMYDNWRPAQPLKN 144 18Peroxinedoxin VI (Prdx VI)P30041 $2.036.00$ $25.16.00$ 56 34 $5/25$ R.FHDFLGDSWGLFSHPKLD 144 18Flavin reductase (FR)P30041 $2.036.00$ $2.5.16.00$ 56 34 $5/25$ R.FHDFLGDSWGLFSHPKLD 144 18Flavin reductase (FR)P30041 $2.011/7.13$ $2.2.2/7.13$ 154 71 1343 R.YCAGILLGDSWGLFSHPRD 282 19Peroxinedoxin II (Padx II)P30041 $2.2.11/7.13$ $2.2.2/7.13$ 154 71 1343 R.YCAGILLGDSWGLFSHPRD 282 10Peroxinedoxin II (Padx II)P30141 $2.2.17/1.13$ $2.2.2/7.13$ 154 71 1343 R.YCAGILLGDSWGLFSHPRD 282 10Peroxinedoxin II (Padx II)P3119 $2.189/5.66$ 118 48 $10/51$ R.YCAGILLGDSWGLFSHPRL 577 11Peroxinedoxin II (Padx II)P32119 $2.189/5.66$ 118 48 $10/51$ R.YCAGIGLGPTIPALLADYRR 577 12Peroxinedoxin II (Padx II)Pa107Pa107 $2.189/5.66$ 118 48 $10/51$ 8.774 8.774 13Peroxinedoxin II (Padx II)Pa107Pa107 8.774 8.774 8.774 8									K.EIINVGHSFHVNFEDNDNR.S	
16 Carbonic anhydrae II (CA II) P0018 29.246.87 29.26.87 105 40 932 K.ADETNEDR.G 31 17 Peroxicedoxin V1 (Prdx V1) P30041 25.036.0 56 34 5/55 R.FIDENGEGEPELMVDNWRPAQPLKN 144 17 Peroxicedoxin V1 (Prdx V1) P30041 25.036.0 56 34 5/55 R.FIDENGEGEPELMVDNWRPAQPLKN 144 18 Flavin reduciase (FR) P30041 25.036.0 56 34 5/55 R.FIDENGEGEPELMVDNWRPAQPLKN 144 18 Flavin reduciase (FR) P30041 25.036.0 56 34 5/55 R.FIDENGEGEPELMVDNWRPAQPLKN 282 18 Flavin reduciase (FR) P30043 22.017.13 15 144 144 18 Flavin reduciase (FR) P30143 21.017.13 15 144 144 19 Peroxiredoxin II (Prdx II) P30143 21.017.13 15 144 144 19 Peroxiredoxin II (Prdx II) P30143 21.177.13 22.277.13	16 Carbonic anhydras II (CA II) 00918 29.246.87 105 40 9/32 KSADETNEPR.G 313 17 Peroxiredoxin VI (Prdx VI) P30041 25.03/6.0 25.1/6.0 56 34 7.1 K.TARELHLYHWYTKY 144 18 Peroxiredoxin VI (Prdx VI) P30041 25.03/6.0 25.1/6.0 56 34 5/25 R.FHDFLGDSWGILFSHPLD 144 18 Flavin reductase (FR) P30043 25.03/6.0 25.1/6.0 56 34 5/25 R.FHDFLGDSWGILFSHPLD 144 19 Flavin reductase (FR) P30043 25.1/7.13 154 71 13/43 R.RFHDFLGDSWGILFSHPLD 144 10 Parvin eductase (FR) P30043 22.2/7.13 154 71 R.RFHDFLGDSWGILFSHPLD 282 11 Peroxiredoxin II (Prdx II) P30043 22.2/7.13 154 R.VYAGOPAVVLLGTRN 282 12 R.RFHDFLGDSWGILFSHPLD R.RFHDFLGDSWGILFSHPLD R.VYAGOPAVVLLGTRN 282 12 R.RFHDFLGDSWGILFSHPL R.RFHDFLGDSWGILFS									K.EIINVGHSFHVNFEDNDNRSVLK.G	
17 Peroxiredoxin VI (Prdx VI) P30041 25.036.00 25.16.00 56 34 5/25 RFHDFLGDSWGILSHPR.D 144 18 Flavin reductase (FR) P30043 25.036.00 25.16.00 56 34 5/25 RFHDFLGDSWGILSHPR.D 144 19 Peroxiredoxin VI (Prdx VI) P30043 25.01.7.13 154 71 1343 RFHDFLGDSWGILSHPR.D 232 19 Peroxiredoxin II (Prdx II) P30143 22.27.1.35 154 71 1343 RTHDFLGDSWGILSHPR.D 232 19 Peroxiredoxin II (Prdx II) P30143 21.17.1.13 22.27.1.13 154 71 1343 RTHDFLGDSWGILSHPR.D 232 19 Peroxiredoxin II (Prdx II) P3119 21.895.566 118 48 10/51 K.TVAORDPRLACYTTLDGRCPSR.V 577 19 Peroxiredoxin II (Prdx II) P32119 21.895.566 118 48 10/51 K.TVAORDPHIGOPULGATYTLDGRCPSR.V 577 19 Peroxiredoxin II (Prdx II) P32119 21.895.566 118 48 10/51 K.TVAORDPHIGOPULGATYTLDGRCPSR.V 577 19	17 Peroxiredoxin VI (Prdx VI) P30041 25.036.0 56 34 5/25 R:LNPROGEDFELANDNWRPAQPLK.N 18 Flavin reductase (FR) P30043 22.11/7.13 154 71 R:LNPROGEDFELANDNWRPAQPLK.N 19 Peroxiredoxin VI (Prdx II) P30043 22.277.13 154 71 13/43 K:TNPROGEDFELANDNWRPAQPLK.N 19 Peroxiredoxin II (Prdx II) P30043 22.11/7.13 154 71 13/43 K:TV AGGILLGDVAPREANTVGR.I 144 19 Peroxiredoxin II (Prdx II) P30143 22.277.13 154 71 13/43 K:TV AGGILLGDVAPREANTVGR.I 232 19 Peroxiredoxin II (Prdx II) P32119 21.895.66 118 48 10/51 K:TV AVMPHIGDPUT.GDVT.NTLDGR.GPSR.V 577 19 Peroxiredoxin II (Prdx II) P32119 21.895.66 118 48 10/51 K:TV AVMPHIGDPUT.GDVT.NTLDGR.GPSR.V 577 19 Peroxiredoxin II (Prdx II) P32119 21.895.66 118 48 10/51 K:TV AVMPHIGDPUT.GDVT.NTLDGR.GPSR.V 577 19 Peroxiredoxin II (Prdx III) P32119 21.895.66 1	16	Carbonic anhydrase II (CA II)	P00918	29.24/6.87	29.2/6.87	105	40	9/32	K.SADFTNFDPR.G	313
17 Peroxiredoxin VI (Prdx VI) P30041 25.03/6.0 56 34 5/25 R.LINFINGEGEPEELMVDNWRPAQPLKN 18 Peroxiredoxin VI (Prdx VI) P30041 25.03/6.0 56 34 5/25 R.FIHPILGDSWGILFSHPR.D 144 18 Flavin reductase (FR) P30043 25.1/17.13 154 71 R.RIFHDELGDSWGILFSHPR.D 144 19 Peroxiredoxin VI (Prdx VI) P30043 22.1/17.13 154 71 13/43 K.LVAGQDAVPILGTR.N 282 19 Peroxiredoxin VI (Prdx VI) P30043 22.1/17.13 154 71 13/43 K.TVAGQDAVPILGTR.N 282 10 Peroxiredoxin II (Prdx II) P3014 22.2/7.13 154 71 K.TVAGDPAVPILGTR.N 282 11 Peroxiredoxin II (Prdx II) P32119 217 154 74 <td< td=""><td>17 Peroxiredoxin VI (Prdx VI) P30041 25.03/6.0 56 34 5/25 R:HDPIGBOWRPAQPLKIN 144 18 Flavin reductase (FR) P30043 25.11/7.13 154 71 R:RFHDEGBYWRPAQPLKIN 144 19 Peroxiredoxin VI (Prdx VI) P30043 25.11/7.13 154 71 13/43 R:RFHDEGBYWGRAFELMONWRPAQPLKIN 144 19 Peroxiredoxin VI (Prdx VI) P30043 22.11/7.13 154 71 13/43 R:RFHDEGBYWGRAFELMONWRPAQPLKIN 282 19 Peroxiredoxin II (Prdx II) P30143 22.27/13 154 71 13/43 R:TVAQDDAVIVLGTRAN 282 19 Peroxiredoxin II (Prdx II) P30143 211/7.13 22.27/13 154 21 282 19 Peroxiredoxin II (Prdx II) P30143 21.89/5.66 118 48 10/51 R:VACGBAPHODOPT/GAVYVTLDGRCPSRV 577 19 Peroxiredoxin II (Prdx II) P32119 2189/5.66 118 48 10/51 R:VACGBAPHODOPT/GAVYVTLDGRCPSRV 577 19 Peroxiredoxin II (Prdx II) P32119 2189/5.66 118 <</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>K. YAAELHLVHWNTK. Y</td><td></td></td<>	17 Peroxiredoxin VI (Prdx VI) P30041 25.03/6.0 56 34 5/25 R:HDPIGBOWRPAQPLKIN 144 18 Flavin reductase (FR) P30043 25.11/7.13 154 71 R:RFHDEGBYWRPAQPLKIN 144 19 Peroxiredoxin VI (Prdx VI) P30043 25.11/7.13 154 71 13/43 R:RFHDEGBYWGRAFELMONWRPAQPLKIN 144 19 Peroxiredoxin VI (Prdx VI) P30043 22.11/7.13 154 71 13/43 R:RFHDEGBYWGRAFELMONWRPAQPLKIN 282 19 Peroxiredoxin II (Prdx II) P30143 22.27/13 154 71 13/43 R:TVAQDDAVIVLGTRAN 282 19 Peroxiredoxin II (Prdx II) P30143 211/7.13 22.27/13 154 21 282 19 Peroxiredoxin II (Prdx II) P30143 21.89/5.66 118 48 10/51 R:VACGBAPHODOPT/GAVYVTLDGRCPSRV 577 19 Peroxiredoxin II (Prdx II) P32119 2189/5.66 118 48 10/51 R:VACGBAPHODOPT/GAVYVTLDGRCPSRV 577 19 Peroxiredoxin II (Prdx II) P32119 2189/5.66 118 <									K. YAAELHLVHWNTK. Y	
17 Peroxiredoxin VI (Prdx VI) P3041 25.03/6.0 55.1/6.0 56 34 5/55 R:LNFNGEGEPEELMVDNWRPAQPLK.N 18 Flavin reductase (FR) P3043 22.11/7.13 22.27/1.13 154 71 24 24 19 Peroxiredoxin II (Prdx II) P3119 21.89/5.66 118 13,43 K:TV-AGQDAVIVLLGTR.N 282 19 Peroxiredoxin II (Prdx II) P3119 21.89/5.66 118 48 10/51 K:VAOMPPHIGDQPLGAVTYTLDGR.G 571 10 Peroxiredoxin II (Prdx II) P3119 21.89/5.66 118 48 10/51 K:VAOMPPHIGDQPLGAYTYTLDGR.G 571 11 Peroxiredoxin II (Prdx II) P3119 21.89/5.66 118 48 10/51 K:VAOMPPHIGDQPLGAYTYTLDGR.G 571 11 Peroxiredoxin II (Prdx II) P3119 21.89/5.66 118 48 10/51 K:VAOMPPHIGDQPLGAYTYTLDGR.G 571 11 Peroxiredoxin II (Prdx II) P3119 21.89/5.66 118 48 10/51 K:VAOMPPHIGDQPLGAYTYTLDGR.G 571 12 P P P P P	17 Peroxiredoxin V1 (Prdx V1) P30041 25.03/6.0 55.1/6.0 56 34 5/25 R.LNFNGEGEPEELMVDNWRPAQPLK.N 18 Flavin reductase (FR) P30043 25.1/1/7.13 25.1/6.0 56 34 5/25 R.FHDFLGDSWGLESHPR.D 144 18 Flavin reductase (FR) P30043 22.11/7.13 154 71 13/43 R.INFNGEGEPEELMVDNWRPAQPLK.N 282 19 Peroxinedoxin U1 (Prdx II) P30043 22.11/7.13 154 71 13/43 K.TVAGQDAVIVLGTR.N 282 10 Peroxinedoxin II (Prdx II) P30143 21.11/7.13 22.27/13 154 71 13/43 K.TVAGQDAVIVLGTR.N 282 10 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.TVAGQDAVIVLGTR.N 577 11 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPINPURLADVTR.R 577 11 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 218 78 K.EGGLGPINPILADVTR.R 577 12 Peroxinedoxin II (Prdx II) P32119									K. YDPSLKPLSVSYDQATSLR.I	
17 R:KLNFNGEGEFELMVDNWRPAQPLKN 17 Peroxiedoxin V1 (Prdx V1) P30041 25.1/6.0 56 34 5/25 R:KLNFNGEGEFELMVDNWRPAQPLKN 144 18 Flavin reductase (FR) P30043 25.1/1.13 154 71 R:RFHDFLGDSWGILFSHPR.D 144 18 Flavin reductase (FR) P30043 22.11/7.13 154 71 R:RFHDFLGDSWGILFSHPR.D 282 19 Peroxineductase (FR) P3014 21.8/5.66 118 48 10/51 K:VAGCPANTLGTR.N 577 10 Peroxinedoxin II (Prdx II) P32119 21.8/5.66 118 48 10/51 K:VAMPPHIGDQPLTGAYTVTLDGRG 577 11 Peroxinedoxin II (Prdx II) P32119 21.8/5.66 118 48 10/51 K:VAMPPHIGDQPLTGAYTVTLDGRG 577 12 R R R:REHDHLADVTR.R K:VAMPPHIGDQPLTGAYTVTLDGRG 577 13 R R R:GGLGPPLNPLLADVTR.R 577 577 577 13 R R R 10/51	[1] \$\$\$ Parwindoxin VI (Prdx VI) \$ \$\$ 93041 \$ \$\$\$ 25.036.0 \$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$									K.LNFNGEGEPEELMVDNWRPAQPLK.N	
17 Peroxiredoxin VI (Prdx VI) P30041 25.03/6.0 25.1/6.0 56 34 5/25 R.FHDFLGDSWGILFSHPR.D 144 18 Flavin reductase (FR) P30043 22.11/7.13 22.27/13 154 71 R.FHDFLGDSWGILFSHPR.D 282 19 Peroxineductase (FR) P30043 22.11/7.13 22.27/13 154 71 13/43 K.TVAGQDAVIVLLGTR.N 282 19 Peroxineductase (FR) P30143 22.11/7.13 22.27/13 154 71 13/43 K.TVAGQDAVIVLLGTR.N 282 19 Peroxineductase (FR) P30143 21.11/7.13 22.27/13 154 71 282 282 19 Peroxineductase (FR) P30143 21.89/5.66 22/5.66 118 48 10/51 K.VVANPPHIGDPPTTGAYTVTLDGR.GFR.V 577 19 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 22/5.66 118 48 10/51 K.VVANPPHIGDPPTTGAYTVTLDGR.PR.V 577 10 Perovinedoxin II (Prdx II) P32119 21.89/5.66 22/5.66 118 48 10/51 K.VVANPPHIGDPPTTGAYTVTLDGR.PR.V 5	17 Peroxiredoxin V1 (Prdx V1) P30041 25.03/6.0 55.1/6.0 56 34 5/25 R:FHDFLGDSWGILFSHPR.D 144 18 Flavin reductase (FR) P30043 22.11/7.13 154 71 1343 K:TVAGQDAVIVLLGTR.N 282 19 Pavin reductase (FR) P30143 22.11/7.13 154 71 1343 K:TVAGQDAVIVLLGTR.N 282 19 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K:VVANPPHIGDQPLTGAYTYTLDGR.G 577 10 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K:VVANPPHIGDQPLTGAYTYTLDGR.G 577 10 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K:VVANPPHIGDQPLTGAYTYTLDGR.G 577 11 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K:VVANPPHIGDQPLTGAYTYTLDGR.G 577 12 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 21.8 48 10/51 K:PCGLGPLNPILLADYTR.R 577 12 PA PA									R.KLNFNGEGEPEELMVDNWRPAQPLK.N	
18 Pavin reductase (FR) P30043 22.11/7.13 154 71 B.IRFHDFLGDSWGLFSHPR.D 282 19 Peroxinedoctase (FR) P30043 22.11/7.13 154 71 13/43 K.TVAGQDATIVLLGTR.N 282 19 Peroxinedoctase (FR) P30043 22.11/7.13 154 71 13/43 K.TVAGQDATIVLLGTR.N 282 19 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.TVAMPPHIGDQPLTGATTVTLDGR.G 577 19 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.TVAUMPHIGDQPLTGATTVTLDGR.G 19 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.TVAUMPHIGDQPLTGATTVTLDGR.G 10 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.TVAUMPHIGDQPLTGATTVTLDGR.G 11 Provinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.TVAUMPHIGDQPLTGATTVTLDGR.G	18 Flavin reductase (FR) P30043 22.11/7.13 22.27/13 154 71 R.IRFHDELGDSWGLESHPR.D 282 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.YVACTSAFLUNDFTKVPR.L 577 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.YVAVMPHIGDQPTGAYTYTLDGR.GFSR.V 577 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.YVAVMPHIGDQPTGAYTYTLDGR.GFSR.V 577 10 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 11 Rescription Redoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 11 Rescription Redoxin	17	Peroxiredoxin VI (Prdx VI)	P30041	25.03/6.0	25.1/6.0	56	34	5/25	R.FHDFLGDSWGILFSHPR.D	144
18 Flavin reductase (FR) P30043 22.11/7.13 22.27/.13 154 71 13/43 R.IFHDFLGDSWGILFSHPLD 282 18 Flavin reductase (FR) P30043 22.11/7.13 22.27/.13 154 71 13/43 K.IVAGQDAVIVLLGTR.N 282 19 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.IVAVMPPHIGDQPLTGAYTVTLDGRGPSR.V 577 19 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.IVAVMPPHIGDQPLTGAYTVTLDGRGPSR.V 577 19 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 10 Recold GPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R 577 11 PA R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R 577 12 R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R 577 13 R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R 577 14 R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R 577 15 R.EGGLGPLNIPLLADVTR.R <td>18 Havin reductase (FR) P30043 22.11/7.13 22.27/.13 154 71 13/43 R.IFHDFLGDSWGILFSHPLD 282 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.VVACTSAFLLWDFTKZPRL 577 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 10 Record.GGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R 577 11 PAR PAR PARCORPLICATVTLDGR.GFR.V 577 12 PEOVERDORPLICATVTLDGR.GFR.V R.EGGLGPLNIPLLADVTR.R 577 13 PAR PARCORPLICATVTLDGR.GFR.V 577 14 AB AB 10/51 R.EGGLGPLNIPLLADVTR.R 577 15 R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R 577 15 R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLRADVTR.R 577</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>M.PGGLLLGDV APNFEANTTVGR.I</td> <td></td>	18 Havin reductase (FR) P30043 22.11/7.13 22.27/.13 154 71 13/43 R.IFHDFLGDSWGILFSHPLD 282 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.VVACTSAFLLWDFTKZPRL 577 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 10 Record.GGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R 577 11 PAR PAR PARCORPLICATVTLDGR.GFR.V 577 12 PEOVERDORPLICATVTLDGR.GFR.V R.EGGLGPLNIPLLADVTR.R 577 13 PAR PARCORPLICATVTLDGR.GFR.V 577 14 AB AB 10/51 R.EGGLGPLNIPLLADVTR.R 577 15 R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R 577 15 R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R R.EGGLGPLNIPLRADVTR.R 577									M.PGGLLLGDV APNFEANTTVGR.I	
18 Flavin reductase (FR) P30043 22.11/7.13 154 71 13/43 K.TVAGQDAVIVLLGTR.N 282 15 15 15 15 15 15 15 15 282 16 16 16 16 17 15 15 15 282 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.TVAVMPPHIGDQPLTGAYTVTLDGRGPSR.V 577 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 14 16 18 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 15 17 16 K.EGGLGPLNIPLLADVTR.R 577 16 16 15 16 16 18 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 16 Peroxinedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 577 17 17 18 10 16 16 16 16 16 16 17 17	18 Flavin reductase (FR) P30043 22.11/7.13 22.27/13 154 71 13/43 K.TVAGQDAVIVLLGTR.N 282 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.TVAGQDAVIVLLGTR.N 577 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.FGGLGPLNIPLLADVTR.R 577 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 10 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 11 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 11 Peroxiredoxin II (Prdx III) P32119 21.89/5.66 PA PA K.EGGLGPLNIPLLADVTR.R 577 12 PA PA PA PA PA PA F.EGGLGPLNIPLLADVTR.R 577 13 PA PA PA PA PA F.EGGLGPLNIPLLADVTR.R <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>R.IRFHDFLGDSWGILFSHPR.D</td> <td></td>									R.IRFHDFLGDSWGILFSHPR.D	
19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 R.VVACTSAFILWDPTKVPPR.L 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 R.FGGLGPLNIPILADVTR.R 577 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 R.FGGLGPLNIPILADVTR.R 577 11 R.FGGLGPLNIPILADVTR.R R.FGGLGPLNIPILADVTR.R R.FGGLGPLNIPILADVTR.R 577 11 R.FGGLGPLNIPILADVTR.R R.FGGLGPLNIPILADVTR.R 577 11 R.FGGLGPLNIPILADVTR.R R.FGGLGPLNIPILADVTR.R 571 11 R.FGGLGPLNIPILADVTR.R R.FGGLGPLNIPILADVTR.R 571 11 R.FGGLGPLNIPILADVTR.R R.FGGLGPLNIPILADVTR.R 571 11 R.FGGLGPLNIPILADVTR.R R.FGGLGPLNIPILADVTR.R 571 11 R.FGGLGPLNIPILADVTR.R R.FGGLGPLNIPILADVTR.R 577	19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K:VVAVMPPHIGDQPLTGAYTVTLDGRGPSR.V 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K:EGGLGPLNIPILLADVTR.R 577 10 R:EGGLGPLNIPILLADVTR.R R:EGGLGPLNIPILLADVTR.R 577 10/51 K:EGGLGPLNIPILLADVTR.R 577 11 R:R R:R R:R R:GGLGPLNIPILLADVTR.R 577 11 R:R R:R R:R 10/51 K:EGGLGPLNIPILLADVTR.R 577 11 R:R R:R R:R R:R 10/51 R:R 10/51 11 R:R R:R R:GGLGPLNIPILLADVTR.R 8.7 10/51 10/51 10/51 11 R:R R:R R:R R:R 10/51 <td< td=""><td>18</td><td>Flavin reductase (FR)</td><td>P30043</td><td>22.11/7.13</td><td>22.2/7.13</td><td>154</td><td>71</td><td>13/43</td><td>K.TVAGQDAVIVLLGTR.N</td><td>282</td></td<>	18	Flavin reductase (FR)	P30043	22.11/7.13	22.2/7.13	154	71	13/43	K.TVAGQDAVIVLLGTR.N	282
19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.VVACTSAFLLWDPTKVPPR.L 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 10 R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 577 10 R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 77 10 R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 577 10 R.LGGUGPLNIPLLADVTR.R R.EGGLGPLNIPLLADVTR.R 577 11 R.KEGGLGPLNIPLLADVTR.R R.LGGUGPLNIPLLADVTR.R 577 11 R.KEGGLGPLNIPLLADVTR.R R.LGGUGPLNIPLLADVTR.R 577 11 R.KEGGLGPLNIPLLADVTR.R R.LGGUGPLNIPLLADVTR.R 577	19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 22/5.66 118 48 10/51 K:VVAVPPHIGDQPLTGAYTVTLJGR.G K:VVAVMPPHIGDQPLTGAYTVTLJGR.G K:VVAVMPPHIGDQPLTGAYTVTLJGR.G K:VVAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:VAVMPPHIGDQPLTGAYTVTLJGR.G K:CGGLGPLNIPLLADVTR.R K:EGGLGPLNIPLLADVTR.R K:EGGLGPLNIPLLADVTR.R K:EGGLGPLNIPLLADVTR.R K:EGGLGPLNIPLLADVTR.R K:EGGLGPLNIPLLADVTR.R									R.VISKHDLGHFMLR.C	
19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.YVAVMPHIGDQPLTGAYTVTLDGRGPSR.V 577 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 10 K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R S77 K.EGGLGPLNIPLLADVTR.R 577 11 K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R 577 11 K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R 577 11 K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R 577	19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 22/5.66 118 48 10/51 K.YVAVMPHIGDQPLTGAYTVTLDGRGPSR.V 577 K.Storedoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R 77 K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R 577 K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R 577 K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R 577									K.VVACTSAFLLWDPTKVPPR.L	
19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 218 48 10/51 K.YVAVMPPHIGDQPLTGAYTVTLDGRGPSR.V 577 19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 10 K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R 571 11 K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R 571 11 K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R 571 11 K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.R 571	19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.YVAVMPPHIGDQPLTGAYTVTLDGRGPSR.V 577 10 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 11 REGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 577 11 R.REGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 878 576 11 R.REGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 878 576 11 R.REGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 878 577 11 R.REGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 878 576 11 R.REGGLGPLNIPLENCORSORSORSORSORSORSORSORSORSORSORSORSORSO									K.YVAVMPPHIGDQPLTGAYTVTLDGR.G	
19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 10/51 R.KEGGLGPLNIPLLADVTR.R 577 R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 10/51 R.KEGGLGPLNIPLLADVTR.R 577 R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 10/51 10/51 R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 10/51 10/51 R.LGEGLGPLNIPLLADVTR.R R.LGEGLGPLNIPLLADVTR.R R.LGEGLGPLNIPLLADVTR.R 10/51 10/51 R.LGEVLGVVDSQFTHLAWNTPR.K R.LGEVLGVVDSQFTHLAWNTPR.K 10/51 10/51 10/51 10/51	19 Peroxiredoxin II (Prdx II) P32119 21.89/5.66 118 48 10/51 K.EGGLGPLNIPLLADVTR.R 577 R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 571 R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 571 R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R R.KEGGLGPLNIPLLADVTR.R 571									K. YVAVMPPHIGDQPLTGAYTVTLDGRGPSR.V	
R.KEGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTRR.L R.LSEDYGVLKTDEGIAYR.G K.LGCEVLGVSVDSQFTHLAWINTPR.K	R.KEGGLGPLNIPLLADVTR.R K.EGGLGPLNIPLLADVTR.L R.LEGGLGPLNIPLLADVTR.L R.LEGULGVSVDSQFTHLAWINTPR.K K.LGCEVLGVSVDSQFTHLAWINTPR.K	19	Peroxiredoxin II (Prdx II)	P32119	21.89/5.66	22/5.66	118	48	10/51	K.EGGLGPLNIPLLADVTR.R	577
K.EGGLGPLNIPLLADVTRR.L R.LSEDYGVLKTDEGIAYR.G K.LGCEVLGVSVDSQFTHLAWINTPR.K	K.EGGLGPLNIPLLADVTR.L R.LSEDYGVLKTDEGIAYR.G K.LGCEVLGVSVDSQFTHLAWINTPR.K									R.KEGGLGPLNIPLLADVTR.R	
R.LSEDYGVLKTDEGIAYR.G K.LGCEVLGVSVDSQFTHLAWINTPR.K	R.LSEDYGVLKTDEGIAYR.G K.LGCEVLGVSVDSQFTHLAWINTPR.K									K.EGGLGPLNIPLLADVTRR.L	
K.LGCEVLGVSVDSQFTHLAWINTPR.K	K.LGCEVLGVSVDSQFTHLAWINTPR.K									R.LSEDYGVLKTDEGIAYR.G	
										K.LGCEVLGVSVDSQFTHLAWINTPR.K	

1–3, 5 and 7 with p < 0.01; 10, 13 and 14 with p nonsignificant) showed a decrease in intensity.

Association of Cytosolic Proteins with Triton Shells

The experiments described above showed that most of the protein bands (HSP90 α , HSP70, catalase, α -enolase, CA I, CA II, Prdx VI, FR and PPIA) which are associated with HEMs were present in the Triton shells—"membrane skeleton" (Fig. 5a, lanes 5–8, and their identities are given in Table 2). The decrease in intensity of stomatin continued (Fig. 5a, lanes 5–7). Proteins, catalase and Prdx II were not associated with UnHEsTS (Fig. 5a, lane 4). The Triton shells extracted from HEMs showed some catalase content at 48 and 50 °C (Fig. 5a, lanes 7 and 8), and Prdx II was observed only in a lesser amount in HEsTS at 50 °C (Fig. 5a, lane 8). Hemoglobin did not associate with HEsTS (Fig. 5a, lanes 5–8), as seen for HEMs (Fig. 4, lane 8–11).

Analysis of the Association of Cytosolic Proteins with Triton Shells

To determine how the different cytosolic proteins interact with the skeletal proteins, UnHEsTS were treated with UnHEsCy, and the combination (UnHEsTS + UnHEsCy) was mixed well and kept at 0, 44, 46, 48 and 50 °C for 15 min. Figure 6 shows the protein profile of unheated erythrocytes (whole cells, lane 1), lysate (lane 2), membrane (lane 3), Triton shells from unheated membranes (lane 4), Triton shells (derived from unheated erythrocyte membranes) incubated with the unheated lysate at 0, 44, 46, 48 and 50 °C for 15 min, respectively (lanes 5–9) and membranes from heat-stressed erythrocytes exposed to 50 °C for 15 min (lane 10). Figure 6b shows a densitometric pattern of a representative protein band profile of UnHEsTS and Un-HEsTs + Cy. Figure 6c shows a bar diagram of the relative mean intensity of the bands from four samples.

The pattern is similar to that obtained for HEsTS (Fig. 5). Bands 8, 9, 12 and 15–20 in UnHEsTS + Cy were increased as in case of HEsTS (Fig. 5). Bands 15 and 17 (p < 0.01) and 16 and 18 (p < 0.001) showed maximum increases in intensity. A slight increase in intensity was observed for bands 9, 12 and 19; but the increase in intensity of bands 8 and 20 was significant (p < 0.05).

Interaction of Cytosolic Proteins and Triton Shells

The Triton shells from UnHEMs show the membrane skeletal protein bands seen in Fig. 5a, lane 4. The proteins which associate with the TS when UnHEsTS + UnHEsCy are heated to different temperatures (Fig. 6a, lanes 6–9) show similar results as obtained when Triton shells are made from HEMs (Fig. 5a, lanes 5–8), indicating that the interaction of

Band	Protein ID	Acc.	Theoretical $M_{\rm r}$	Observed $M_{\rm r}$	MS ana	lysis		MS-MS analysis	
no.		no.	(kDa)/pl	(kDa)/pI	Score ¹	Sequence coverage (%)	Peptides matched	Peptides	Score ²
20	Peptidyl-prolyl <i>cis-trans</i> isomerase A(PPIA)	P62937	18.01/7.68	18.2/7.68	89	74	9/57	K. VKEGMNIVEAMER.F R.IIPGFMCQGGDFTR.H R.IIPGFMCQGGDFTR.H K.SIYGEKFEDENFILK.H M.VNPTVFFDIAVDGEPLGR.V	289
Acc. r ¹ MS	o. accession number and MS-MS scores are mentioned	in rounde	d figures						

Fable 2 continued

Fig. 6 Analysis of interactions of Triton shells and cytosolic proteins obtained from unheated erythrocytes (*UnHEs*) under heat stress. **a** Separation of proteins of Triton shells interacted with cytosolic proteins under heat stress by SDS-PAGE (12 % gel) and stained with CBB followed by mass spectrometric identification (Table 3). *Lane 1* unheated erythrocytes (whole cells, 60 μ l); *lane 2* unheated erythrocyte (60 μ g); *lane 3* unheated erythrocyte membrane (60 μ g); *lane 4* Triton shells obtained from unheated erythrocyte membrane (50 μ g); *lanes 5–9* Triton shells (derived from unheated erythrocyte)

cytosolic proteins with the membrane skeleton proteins is specific. It is noted that proteins CA I, CA II, Prdx VI and FR start associating with the UnHEsTS when the combination is heated at 46 °C (Fig. 6a, lane 7). Further, catalase and Prdx II did not become associated with UnHEsTS when UnHEsTs were mixed with UnHEsCy and heated (Fig. 6a, lanes 6–9) or Triton shells were made from HEMs (Fig. 5a, lanes 6–8). As these proteins did not become attached with the Triton shells, they probably interact with the membrane protein/ lipid bilayer not present in the Triton shells. Hb remained associated with UnHEsTS + Cy as expected since Un-HEsTS is treated with the cytosol which does not have any Triton in it (Fig. 6a, lanes 5–9).

Discussion

There are few reports regarding the association of cytosolic proteins with the membrane of some mammalian erythrocytes exposed to heat stress (Gudi and Gupta 1993; Wagner

membranes) were incubated with the unheated lysate at 0, 44, 46, 48 and 50 °C for 15 min, respectively (50 µg protein in each *lane*); *Lane* 10 Membranes from heat-stressed erythrocytes exposed to 50 °C for 15 min. (60 µg). **b** Densitometric spectra of UnHEsTS (*red peaks*) and UnHEsTS + Cy (green peaks). **c** Bar diagram shows changes in protein intensity (n = 4). The data are mean \pm SE (n = 4). Upper symbol indicates the differences versus control (UnHEsTS). *p < 0.05, **p < 0.01, ***p < 0.001; *ns* nonsignificant (Color figure online)

et al. 2004; Rocha et al. 2009). In rhesus erythrocytes, HSP70-like protein together with other cytosolic proteins is reported to become associated with the membrane during heat stress (Gudi and Gupta 1993). Wagner et al. (2004) have reported the translocation of TCP 1, CA and FR from the cytosol to the membrane of human erythrocytes after exposure to elevated temperature. Our observations indicate that CA (isoforms I and II) and FR along with Prdx VI and PPIA become significantly associated with membranes. A minor increase in catalase and α -enolase content was also persistent. In addition, a specific association of these cytosolic proteins except catalase and Prdx II to the Triton-generated membrane shell has been shown. The new interesting observation about the interactions of cytosolic and cytoskeletal proteins is that cytosolic proteins become associated with shell proteins when UnHEsTS is heated with UnHEsCy at different elevated temperatures. The initial temperature of the association of cytosolic proteins with the erythrocyte membrane is 46 °C, and it increases to 50 °C.

I able	3 Details of the mass spectrometr	c analysis	tor proteins snowi	oc .gra ni n					
Band	Protein ID	Acc.	Theoretical $M_{\rm r}$	Observed $M_{\rm r}$	MS anai	lysis		MS–MS analysis	
no.		no.	(kDa)/pI	(kDa)/pI	Score ¹	Sequence coverage (%)	Peptides matched	Peptides	Score ¹
UnHEs	TS + Cy								
S	Heat shock protein 90α (HSP90α)	P07900	84.66/4.94	85/4.94	57	17	8/26	2	
7	Heat shock protein 70 (HSP70)	P16452	70.05/5.48	77.8/8.39	73	27	10/25	7	
×	Catalase	P04040	59.75/6.9	59.9/6.9	36	14	5/28	R.LGPNYLHIPVNCPYR.A R.GPLLVQDVVFTDEMAHFDRER.I	99
6	α-Enolase	P06733	47.16/7.01	47.5/7.0	33	18	6/18	K.LAMQEFMILPVGAANFR.E	33
15	Carbonic anhydrase I (CA I)	P00915	28.87/6.59	28.9/6.59	114	37	7/12	K.GGPFSDSYR.L	113
								K.EIINVGHSFHVNFEDNDNR.S	
								R.SLLSNVEGDNAVPMQHNNRPTQPLK.G	
16	Carbonic anhydrase II (CA II)	P00918	29.24/6.87	29.2/6.87	72	37	9/34	R.LIQFHFHWGSLDGQGSEHTVDK.K	102
								K.LNFNGEGEPEELMVDNWRPAQPLK.N	
								R.KLNFNGEGEPEELMVDNWRPAQPLK.N	
17	Peroxiredoxin VI (Prdx VI)	P30041	25.03/6.0	25.1/6.0	52	35	6/27	R.FHDFLGDSWGILFSHPR.D	359
								M.PGGLLLGDVAPNFEANTTVGR.I	
								R.IRFHDFLGDSWGILFSHPR.D	
18	Flavin reductase (FR)	P30043	22.11/7.13	22.2/7.13	61	30	5/18	R.LQAVTDDHIR.M	51
								R.VISKHDLGHFMLR.C	
								K.YVAVMPPHIGDQPLTGAYTVTLDGR.G	
19	Peroxiredoxin II (Prdx II)	P32119	21.89/5.66	22/5.66	114	41	9/32	R.QITVNDLPVGR.S	321
								K.EGGLGPLNIPLLADVTR.R	
								R.KEGGLGPLNIPLLADVTR.R	
								K.EGGLGPLNIPLLADVTRR.L	
								K.LGCEVLGVSVDSQFTHLAWINTPR.K	
20	Peptidyl-prolyl cis-trans	P62937	18.01/7.68	18.2/7.68	85	70	9/46	R.IIPGFMCQGGDFTR.H	111
	isomerase A (PPIA)							K.SIYGEKFEDENFILK.H	
								M.VNPTVFFDIAVDGEPLGR.V	

analysis for proteins shown in Fig. cirio Table 3 Details of the

Acc. no. accession number

 $^1\,$ MS and MS–MS scores are mentioned in rounded figures $^2\,$ MS-MS data could not be obtained for HSP900 and HSP70

2 Springer

Upon exposure to elevated temperatures, a number of transitions occur in the erythrocyte membrane. Spectrin is the least thermostable major membrane protein and undergoes a major denaturation at 49-50 °C during the first thermal transition (Brandts et al. 1977). This leads to destabilization of the membrane skeleton and results in the formation of spherocytes (Coakley et al. 1979; Lysko et al. 1981; Eskelinen et al. 1985). Similar results were obtained when intact erythrocytes were exposed to elevated temperatures, and a direct correlation between hemolysis and membrane protein denaturation has been reported (Lepock et al. 1989). Heat-stressed erythrocytes vesiculate (Smith and Palek 1983) and show reduced deformability (Mohandas and Gallagher 2008). Parameters of the protein structure of spectrin studied as circular dichroism, scanning calorimetry (Brandts et al. 1977), fluorescence polarization (Yoshino and Marchesi 1984) and trypsin susceptibility (Knowles et al. 1983) indicated that clear structural transitions occurred at temperatures around 49 °C. Solubilized spectrin in membrane skeletal extract when exposed to heat treatment experiences much greater effects (Yoshino and Minari 1987) than in intact cells (Gudi et al. 1990). Although denaturation of spectrin is reported to occur at 49-50 °C, our observations indicate that translocation of cytosolic proteins to the membrane starts at 46 °C and increases progressively up to 50 °C. This indicates that some structural alterations in the spectrin molecules may be initiated at 46 °C, sufficient to cause interactions with cytosolic proteins. It is possible that the process of spectrin denaturation may start at 46 °C and only a small fraction gets denatured, while at 50 °C a larger fraction undergoes denaturation, which leads to increased fragility and recordable thermal transition effects. Studies on the effect of chemical modification of membrane proteins have indicated that both the alkylation and oxidation of thiol groups and subsequent heating make the membrane irreversibly more disorganized. Alkylation of thiol groups by N-ethylmaleimide (NEM) treatment decreases the heat denaturation temperature of spectrin and the fragmentation temperature of erythrocytes (Smith and Palek 1983). The oxidation of the erythrocyte membrane by diamide is related to the formation of disulfide bonds (Becker et al. 1986). Diamide as well as NEM treatment affect spectrin self-association in the membrane, leading to decreased association between dimers and, consequently, a looser skeletal organization (Streichman et al. 1988). The extent of thermal sensitivity depends on both the temperature and the state of the membrane thiol groups, and hyperthermia progressively decreases the levels of thiol groups in pig erythrocytes (Jozwiak et al. 1991). Membranes or Triton shells obtained from heat-stressed erythrocytes were analyzed by SDS-PAGE in the presence and absence of β -mercaptoethanol. The results indicate that no disulfide bond formation occurs between membrane and cytosolic proteins because additional protein complexes could not be observed in the heat-stressed samples without β -mercaptoethanol (results not shown). Extraction of heated erythrocytes or membranes isolated from HEs with non-ionic detergent Triton X-100 does not cause solubilization of cytosolic proteins. We have also observed that cytosolic proteins which are associated with Triton shells during heat treatment are not extracted with 0.5 M NaCl (results not given).

In conclusion, this study demonstrates the presence of cytosolic proteins in the membrane or membrane skeleton of heat-stressed erythrocytes. Such an association of cytosolic proteins with membranes or the membrane skeleton might be helpful in the stabilization of erythrocytes and in reducing the adverse effects on cells during thermal stress. It is likely that during summer in tropical countries the erythrocytes of individuals exposed to high temperatures for a longer time may become affected. A fraction of cytosolic proteins associated with membranes may serve as a marker of damage to body cells during thermal stress. Knowledge of the erythrocyte responses to heat stress helps in understanding the mechanism and provides avenues toward preventative measures for heat stress–related aftereffects.

Acknowledgments We thank Mr. S. Dolas, from the mass spectroscopy facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, for his help and suggestions. We also thank all those who donated blood for this study. This work was supported by a grant to S. M. G. from the University Grants Commission, New Delhi, India [Major Research Project F-37-138/2009 (SR)].

References

- Amer J, Zelig O, Fibach E (2008) Oxidative status of red blood cells, neutrophils, and platelets in paroxysmal nocturnal hemoglobinuria. Exp Hematol 36:369–377
- Becker PS, Cohen CM, Lux SE (1986) The effect of mild diamide oxidation on the structure and function of human erythrocyte spectrin. J Biol Chem 261:4620–4628
- Bennett V (1990) Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol Rev 70:1029–1065
- Biondani A, Franco T, Franco C, Alessandro M, Alida F, Angela S, Yves B, Lucia De F (2008) Heat-shock protein-27, -70 and peroxiredoxin-II show molecular chaperone function in sickle red cells: evidence from transgenic sickle cell mouse model. Proteomics Clin Appl 2:706–719
- Brandts JF, Erickson L, Lysko K, Schwartz AT, Taverna RD (1977) Calorimetric studies of the structural transitions of the human erythrocyte membrane. The involvement of spectrin in the A transition. Biochemistry 16:3450–3454
- Coakley WT, Bater AJ, Crum LA, Deeley JO (1979) Morphological changes, haemolysis and microvesicularization of heated human erythrocytes. J Therm Biol 4:85–93
- D'Amici GM, Rinalducci S, Zolla L (2007) Proteomic analysis of RBC membrane protein degradation during blood storage. J Proteome Res 6:3242–3255

- Devasena T, Lalitha S, Padma K (2001) Lipid peroxidation, osmotic fragility and antioxidant status in children with acute poststreptococcal glomerulonephritis. Clin Chim Acta 308:155–161
- Eskelinen S, Coakley WT, Tilley D (1985) Thermal denaturation of the erythrocyte cytoskeleton alters the morphological changes associated with osmotic swelling. J Therm Biol 10:187–190
- Goodman SR, Kurdia A, Ammann L, Kakhniashvili D, Daescu O (2007) The human red blood cell proteome and interactome. Exp Biol Med 232:1391–1408
- Gudi T, Gupta CM (1993) Hsp 70-like protein in rhesus erythrocyte cytosol and its interactions with membrane skeleton under heat and pathologic stress. J Biol Chem 268:21344–21350
- Gudi SRP, Kumar A, Bhakuni V, Gokhale SM, Gupta CM (1990) Membrane skeleton–bilayer interaction is not the major determinant of membrane phospholipid asymmetry in human erythrocytes. Biochim Biophys Acta 1023:63–72
- Halliwell B, Gutteridge JMC (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246:501–514
- Hanahan DJ, Ekholm JE (1974) The preparation of red cell ghosts (membranes). Methods Enzymol 31:168–172
- Ho KC, Lin PS (1991) Response of erythrocytes to heat in the presence of D_2O , glycerol, and anisotonic saline. Radiat Res 125:20–27
- Houston H, Mearow KM (1979) Temperature-related changes in the erythrocytic carbonic anhydrase (actazolamide-sensitive estrase) activity of goldfish, *Carassius auratus*. J Exp Biol 78:255–264
- Jaja SI, Ikotum AR, Gbenebitse S, Temiye EO (2002) Blood pressure, hematologic and erythrocyte fragility changes in children suffering from sickle cell anemia following ascorbic acid supplementation. J Trop Pediatr 48:366–370
- Jozwiak Z, Palecz D, Leyko W (1991) The response of pig erythrocytes to thermal stress. Int J Radiat Biol 59:479–487
- Kakhniashvili DG, Bulla LA Jr, Goodman SR (2004) The human erythrocyte proteome: analysis by ion trap mass spectrometry. Mol Cell Proteomics 3:501–509
- Knowles WJ, Morrow JS, Speicher DW, Zarkowsky HS, Mohandas N, Mentzer WC, Shohet SB, Marchesi VT (1983) Molecular and functional changes in spectrin from patients with hereditary pyropoikilocytosis. J Clin Invest 71:1867–1877
- Kriebardis AG, Antonelou MH, Stamoulis KS, Economou-Petersen E, Margaritis LH, Papassideri IS (2007) Progressive oxidation of cytoskeletal proteins and accumulation of denatured hemoglobin in stored red cells. J Cell Mol Med 11:148–155
- Kumar A, Gudi SR, Gokhale SM, Bhakuni V, Gupta CM (1990) Heat-induced alterations in monkey erythrocyte membrane phospholipid organization and skeletal protein structure and interactions. Biochim Biophys Acta 1030:269–278
- Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T₄. Nature 227:680–685
- Lepock JR, Frey HE, Bayne H, Markus J (1989) Relationship of hyperthermia-induced hemolysis of human erythrocytes to the

thermal denaturation of membrane proteins. Biochim Biophys Acta 14:191–201

- Lii CK, Hung CN (1997) Protein thiol modifications of human red blood cells treated with *t*-butyl hydroperoxide. Biochim Biophys Acta 1336:147–156
- Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275
- Lysko KA, Carlson R, Taverna R, Snow J, Brandts JF (1981) Protein involvement in structural transitions of erythrocyte ghosts. Use of thermal gel analysis to detect protein aggregation. Biochemistry 20:5570–5576
- Minetti M, Ceccarini M, Distasi AMM, Petrucci TC, Marchesi VT (1986) Spectrin involvement in a 40°C structural transition of the red blood cell membrane. J Cell Biochem 30:361–370
- Mohandas N, Gallagher PG (2008) Red cell membrane: past, present, and future. Blood 112:3939–3948
- Ozturk O, Gumuslu S (2004) Age-related changes of antioxidant enzyme activities, glutathione status and lipid peroxidation in rat erythrocytes after heat stress. Life Sci 75:1551–1565
- Pasini EM, Kirkegaard M, Mortensen P, Lutz HU (2006) In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood 108:791–801
- Rocha S, Costa E, Coimbra S, Nascimento H, Catarino C, Rocha-Pereira P, Quintanilha A, Belo L, Santos-Silva A (2009) Linkage of cytosolic peroxiredoxin 2 to erythrocyte membrane imposed by hydrogen peroxide–induced oxidative stress. Blood Cells Mol Dis 43:68–73
- Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858
- Smith DK, Palek J (1983) Sulfhydryl reagents induce altered spectrin self-association, skeletal instability and increased thermal sensitivity of red cells. Blood 62:1190–1196
- Streichman S, Hertz E, Tatarsky I (1988) Direct involvement of spectrin thiols in maintaining erythrocyte membrane thermal stability and spectrin dimer self-association. Biochim Biophys Acta 942:333–340
- Utoh J, Zajkowski B, Joy E, Harasaki H (1992) Effects of heat on fragility and morphology of human and calf erythrocytes. J Invest Surg 5:305–313
- Wagner CT, Lu IY, Hoffman MH, Sun WQ, Trent JD, Connor J (2004) T-complex polypeptide-1 interacts with the erythrocyte cytoskeleton in response to elevated temperatures. J Biol Chem 279:16223–16228
- Yoshino H, Marchesi VT (1984) Isolation of spectrin subunits and reassociation in vitro. Analysis by fluorescence polarization. J Biol Chem 259:4496–4500
- Yoshino H, Minari O (1987) Heat induced dissociation of human erythrocyte spectrin dimer into monomers. Biochim Biophys Acta 905:100–108